吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (5): 1414-1419.doi: 10.13229/j.cnki.jdxbgxb20180145

• • 上一篇    

基于流固耦合的汽车气动特性

胡兴军(),惠政,郭鹏,张扬辉,张靖龙,王靖宇(),刘飞   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2018-02-04 出版日期:2019-09-01 发布日期:2019-09-11
  • 通讯作者: 王靖宇 E-mail:hxj@jlu.edu.cn;wangjy@jlu.edu.cn
  • 作者简介:胡兴军(1976-),男,教授,博士生导师.研究方向:汽车空气动力学.E-mail:hxj@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51875238);吉林省重大科技支撑计划项目(20096005)

Characteristics of aerodynamics for an automobile by fluid-structure coupled method

Xing-jun HU(),Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG(),Fei LIU   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2018-02-04 Online:2019-09-01 Published:2019-09-11
  • Contact: Jing-yu WANG E-mail:hxj@jlu.edu.cn;wangjy@jlu.edu.cn

摘要:

传统CFD仿真方法通常只考虑风载荷对汽车气动性能的作用,忽略了车身结构振动与气流之间耦合作用带来的影响,导致计算结果与真实汽车行驶状况存在一定偏差。以1/4标准MIRA模型为研究对象,通过双向显式流固耦合仿真方法将流固耦合效应引入到数值计算中,得到不同工况下的气动力、表面压力、振动频率以及车身姿态角等数据,分析与传统仿真方法在计算结果上的差异,再利用风洞测试技术验证仿真结果的准确性。对比有无耦合仿真及试验结果表明:耦合仿真与试验结果更加吻合,各项数据偏差都在5%以内,从而验证了耦合仿真方法的准确性;随车速增加流固耦合效应影响增大,特别是对气动升力的影响较大,直接影响汽车操纵稳定性,因此在高速时流固耦合效应带来的影响不能忽略。

关键词: 车辆工程, 流固耦合, 汽车空气动力学, 计算流体力学, 气动特性

Abstract:

The traditional CFD simulation method generally only considers the effect of wind load on the aerodynamic performance of the automobile and neglects the influence of the coupling between the vibration of the body structure and the airflow, resulting in some discrepancies between the calculated results and the real car driving conditions. Taking the 1/4 standard MIRA model as the research object, the fluid-structure interaction effect is introduced into the numerical simulation through the bidirectional explicit fluid-solid coupling simulation method, and the aerodynamic forces, surface pressures, vibration frequencies and body attitude angles under different conditions are obtained. The differences between the current simulation results and the traditional simulation methods are analyzed. The accuracy of the current simulation results is verified by the wind tunnel test. Comparing with and without coupling simulation, the experimental results show that the coupling simulation is more consistent with the experimental results and the deviation of the data is within 5%, which verifies the accuracy of the coupled simulation method. The fluid-solid coupling effect is more affected with the increase in vehicle speed, especially the impact of aerodynamic lift directly affects the vehicle handling stability. As a result, the effect of fluid-solid interaction cannot be ignored at high speeds.

Key words: vehicle engineering, fluid-structure interaction, automotive aerodynamics, computational fluid dynamics, aerodynamic characteristics

中图分类号: 

  • U461.1

图1

四自由度系统动力学模型"

图2

模型尺寸"

图3

模型面网格"

图4

气动阻力和升力差异对比"

图5

车身底部压力对比"

图6

不同车速下车身振动主频幅值"

表1

固有频率差异分析"

固有频率计算结果
偏差?/%-1.13
模态分析频率/Hz4.94
耦合仿真频率/Hz4.88

图7

模型及安装支架"

图8

气动力变化趋势"

表2

MIRA模型的气动阻力与气动升力对比"

风速/(m·s-1气动阻力/N气动升力/N
仿真值试验值仿真值试验值
154.154.224.504.44
207.397.568.288.12
2512.4012.9413.2212.80
3018.3318.2619.8119.23
3524.9925.9927.9626.98

图9

车身姿态角变化趋势"

图10

底部压力对比"

1 胡兴军. 汽车空气动力学[M]. 北京: 人民交通出版社, 2014.
2 朱文峰, 林佩剑, 周辉. 高速流固耦合效应下车窗密封机理建模与分析[J]. 汽车工程, 2015, 37(12): 1395-1399.
ZhuWen-feng, LinPei-jian, ZhouHui. Modeling and analysis of window sealing mechanism of high speed fluid-solid coupling effect[J]. Automotive Engineering, 2015, 37(12): 1395-1399.
3 李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都: 西南交通大学牵引动力国家重点实验室, 2012.
LiTian. Study on fluid-structure coupling calculation method and dynamics performance of high speed train[D]. Chengdu: State Key Laboratory of Traction Power, Southwest Jiaotong University, 2012.
4 CaiC S, ZhangW, LiuX Z, et al. Framework of wind-vehicle-bridge interaction analysis and its applications[J]. Journal of Earthquake and Tsunami, 2013, 7(3): 132-141.
5 谢超, 谷正气, 宗轶琦, 等. 流固耦合作用对汽车侧窗气动噪声的影响[J]. 中国机械工程, 2014, 25(24): 3391-3396.
XieChao, GuZheng-qi, ZongYi-qi, et al. Influence of solid coupling on aerodynamic noise of automobile side window[J]. China Mechanical Engineering, 2014, 25(24): 3391-3396.
6 朱晖, 杨志刚. 类车体流固耦合现象实验及数值分析[J]. 同济大学学报: 自然科学版, 2014, 42(11): 1694-1699.
ZhuHui, YangZhi-gang. Experimental and numerical analysis for fluid structure interaction phenomenon of ahmed body[J]. Journal of Tongji University (Natural Science), 2014, 42(11): 1694-1699.
7 钱若军, 董石麟, 袁行飞. 流固耦合理论研究进展[J]. 空间结构, 2008, 14(1): 3-15.
QianRuo-jun, DongShi-lin, YuanXing-fei. Research progress in fluid-solid coupling theory[J]. Spatial structure, 2008, 14(1): 3-15.
8 苏波, 钱若军, 袁行飞. 流固耦合界面信息传递理论和方法研究进展[J]. 空间结构, 2010, 16(1): 3-10.
SuBo, QianRuo-jun, YuanXing-fei. Advabces in researchon theory and method of data exchange on coupling interface for FSI analysis[J]. Spatial structure, 2010, 16(1): 3-10.
9 SAE J2071—1994. Aerodynamic testing of road vehicles-open throat wind tunnel adjustment[S].
10 杨博, 傅立敏. 轿车外流场网格生成策略及数值模拟[J]. 农业机械学报, 2007, 38(4): 8-11.
YangBo, FuLi-min. Mesh generation strategies of the external flow field around a sedan and the numerical simulation research[J]. Journal of Agricultural Mechanization, 2007, 38(4): 8-11.
11 SimoneS. Numerical flow simulations of a detailed car underbody[C]∥SAE Technical Paper, 2001-01-0703.
12 康顺. 计算域选取对CFD模拟结果的影响[C]∥中国工程热物理学会2004年热机气动热力学学术会议论文集, 西安, 2004: 128-133.
13 SongK S, KangS O, JunS O, et al. Aerodynamic design optimization of rear body shapes of a sedan for drag reduction[J]. International Journal of Automotive Technology, 2012, 13(6): 905-914.
14 KangS O, JunS O, ParkH I, et al. Actively translating a rear diffuser device for the aerodynamic drag reduction of a passenger car[J]. International Journal of Automotive Technology, 2012, 13(4): 583-592.
15 SchroeckD, KrantzW, WiddeckeN, et al. Unsteady aerodynamic properties of a vehicle model and their effect on driver and vehicle under side wind conditions[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(1): 108-119.
16 张英朝, 张喆, 李杰. 汽车风洞支撑干扰扣除方法研究[J]. 实验流体力学, 2011, 25(3): 16-19.
ZhangYing-chao, ZhangZhe, LiJie. Method to eliminate the interference of model support in automotive wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 16-19.
17 张英朝. 基于仿真与实验的汽车风洞修正研究[D]. 长春: 吉林大学汽车工程学院, 2010.
ZhangYing-chao. Wind tunnel correction based on simulation and experiment[D]. Changchun: College of Automotive Engineering, Jilin University, 2010.
[1] 马芳武,韩露,周阳,王世英,蒲永锋. 采用聚乳酸复合材料的汽车零件多材料优化设计[J]. 吉林大学学报(工学版), 2019, 49(5): 1385-1391.
[2] 高振海,孙天骏,何磊. 汽车纵向自动驾驶的因果推理型决策[J]. 吉林大学学报(工学版), 2019, 49(5): 1392-1404.
[3] 张博,张建伟,郭孔辉,丁海涛,褚洪庆. 路感模拟用永磁同步电机电流控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1405-1413.
[4] 李静,石求军,刘鹏,户亚威. 基于纵向车速估算的商用车ABS神经网络滑模控制[J]. 吉林大学学报(工学版), 2019, 49(4): 1017-1025.
[5] 杨顺,蒋渊德,吴坚,刘海贞. 基于多类型传感数据的自动驾驶深度强化学习方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1026-1033.
[6] 陈鑫,李铭,阮新建,王宁,王佳宁. 基于浸入单元法和延迟分离涡模型的Ahmed车模尾流涡旋结构[J]. 吉林大学学报(工学版), 2019, 49(4): 1034-1042.
[7] 周华,杨志刚,朱晖. 基于整车风洞试验的MIRA车型数值计算[J]. 吉林大学学报(工学版), 2019, 49(4): 1043-1053.
[8] 陈吉清,刘蒙蒙,兰凤崇. 三元动力电池及其成组后的过充安全性试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1072-1080.
[9] 柳润东,毛军,郗艳红,张宏宇,彭飞. 横风下高速列车会车压力波对风障的气动冲击[J]. 吉林大学学报(工学版), 2019, 49(4): 1054-1062.
[10] 秦国锋,那景新,慕文龙,谭伟,栾建泽,申浩. 高温老化对CFRP/铝合金粘接接头失效的影响[J]. 吉林大学学报(工学版), 2019, 49(4): 1063-1071.
[11] 张立斌,吴岛,单洪颖,邓祥敬. 基于制动试验台架的多轴车轴荷自调系统设计[J]. 吉林大学学报(工学版), 2019, 49(4): 1081-1091.
[12] 李寿涛,李秋媛,刘辉,丁辉,田彦涛,于丁力. 可实现车辆稳定性控制的滑模变结构策略[J]. 吉林大学学报(工学版), 2019, 49(4): 1288-1292.
[13] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[14] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[15] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!