1 | 谢里阳 . 可靠性设计[M]. 北京: 高等教育出版社, 2013. | 2 | Nagode M , Fajdiga M . An improved algorithm for parameter estimation suitable for mixed Weibull distributions[J]. International Journal of Fatigue, 2000, 22(1): 75-80. | 3 | Krifa M . A mixed Weibull model for size reduction of particulate and fibrous materials[J]. Powder Technology, 2009, 194(3): 233-238. | 4 | Bu?ar T , Nagode M , Fajdiga M . Reliability approximation using finite Weibull mixture distributions[J]. Reliability Engineering & System Safety, 2004, 84(3): 241-251. | 5 | 蒋仁言 . 威布尔模型族:特性、参数估计和应用[M]. 北京:科学出版社, 1998. | 6 | Nwobi F N , Ugomma C A . A comparison of methods for the estimation of Weibull distribution parameters[J]. Advances in Methodology & Statistics, 2014, 11(1): 65-78. | 7 | 方开泰, 许建伦 . 统计分布[M]. 北京:高等教育出版社, 2016. | 8 | Datsiou K C , Overend M . Weibull parameter estimation and goodness-of-fit for glass strength data[J]. Structural Safety, 2018, 73:29-41. | 9 | Davies I J . Unbiased estimation of the Weibull scale parameter using linear least squares analysis[J]. Journal of the European Ceramic Society, 2017, 37(8): 2973-2981. | 10 | 魏艳华, 王丙参, 邢永忠 . 指数-威布尔分布参数贝叶斯估计的混合Gibbs算法[J]. 统计与决策, 2017(16):70-73. | 10 | Wei Yan-hua , Wang Bing-shen , Xing Yong-zhong . Mixed gibbs algorithm of Bayesian estimation of parameters for exponentiated Weibull distribution[J]. Statistics and Decision, 2017(16): 70-73. | 11 | Ignacio M , Chubynsky M V , Slater G W . Interpreting the Weibull fitting parameters for diffusion-controlled release data[J]. Physica A:Statistical Mechanics & Its Applications, 2017, 486:486-496. | 12 | 吴龙涛, 王铁宁, 杨帆 . 基于贝叶斯法和蒙特卡洛仿真的威布尔型装备器材需求预测[J]. 兵工学报, 2017, 38(12): 2447-2454. | 12 | Wu Long-tao , Wang Tie-ning , Yang Fan . Demand forecasting of equipment and materials by Weibull distribution based on Bayesian estimation and Monte Carlo simulation[J]. Acta Armamentarii, 2017, 38(12): 2447-2454. | 13 | 郑锐 . 三参数威布尔分布参数估计及在可靠性分析中的应用[J]. 振动与冲击, 2015, 34(5):78-81. | 13 | Zheng Rui . Parameter estimation of three-parameter Weibull distribution and its application in reliability analysis[J]. Journal of Vibration and Shock, 2015, 34(5): 78-81. | 14 | 王晓峰, 张英芝, 申桂香,等 . 基于 ITLS 和 DE 的加工中心三参数威布尔分布[J]. 华南理工大学学报:自然科学版, 2015, 43(6): 84-88. | 14 | Wang Xiao-feng , Zhang Ying-zhi , Shen Gui-xiang , et al . Three-parameter Weibull distribution of machining center based on ITLS and DE[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(6): 84-88. | 15 | 许伟, 程刚, 黄林,等 . 基于混沌模拟退火PSO算法的威布尔分布参数估计应用研究[J]. 振动与冲击, 2017, 36(12): 134-139. | 15 | Xu Wei , Cheng Gang , Huang Lin , et al . A chaotic simulated PSO algorithm application for Weibull distribution parameter estimation[J]. Journal of Vibration and Shock, 2017, 36(12): 134-139. | 16 | ?rkcü H H , ?zsoy V S , Aksoy E , et al . Estimating the parameters of 3-p, Weibull distribution using particle swarm optimization: a comprehensive experimental comparison[J]. Applied Mathematics & Computation, 2015, 268(9): 201-226. | 17 | Abbasi B , Niaki S T A , Khalife M A , et al . A hybrid variable neighborhood search and simulated annealing algorithm to estimate the three parameters of the Weibull distribution[J]. Expert Systems with Applications, 2011, 38(1): 700-708. | 18 | Abbasi B , Hosseinifard S Z , Coit D W . A neural network applied to estimate Burr XII distribution parameters[J]. Reliability Engineering & System Safety, 2010, 95(6): 647-654. | 19 | Xu M , Droguett E L , Lins I D , et al . On the q-Weibull distribution for reliability applications: an adaptive hybrid artificial bee colony algorithm for parameter estimation[J]. Reliability Engineering & System Safety, 2017, 158: 93-105. | 20 | Lacour C , Massart P , Rivoirard V . Estimator selection: a new method with applications to kernel density estimation[J]. Sankhya A, 2017, 79(2): 298-335. | 21 | Xu X , Yan Z , Xu S . Estimating wind speed probability distribution by diffusion-based kernel density method[J]. Electric Power Systems Research, 2015, 121: 28-37. | 22 | Silverman B W . Density Estimation for Statistics and Data Analysis[M]. London: Chapman & Hall,1986. | 23 | MacQueen J . Some methods for classification and analysis of multivariate observations[C]∥Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,California, 1967: 281-297. | 24 | Rashedi E , Nezamabadi-Pour H , Saryazdi S . GSA: a gravitational search algorithm[J]. Information Sciences, 2009, 179(13): 2232-2248. | 25 | Li C , Zhou J , Xiao J , et al . Parameters identification of chaotic system by chaotic gravitational search algorithm[J]. Chaos Solitons & Fractals, 2012, 45(4): 539-547. |
|