吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 668-677.doi: 10.13229/j.cnki.jdxbgxb20190344

• 计算机科学与技术 • 上一篇    

水下视频图像清晰化方法

程艳芬(),姚丽娟,袁巧,陈先桥   

  1. 武汉理工大学 计算机科学与技术学院,武汉 430063
  • 收稿日期:2019-04-09 出版日期:2020-03-01 发布日期:2020-03-08
  • 作者简介:程艳芬(1970-),女,副教授,博士.研究方向:模式识别,图像处理.E-mail:995132428@qq.com
  • 基金资助:
    国家自然科学基金项目(51179146)

Clearing strategy of underwater video image

Yan-fen CHENG(),Li-juan YAO,Qiao YUAN,Xian-qiao CHEN   

  1. School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China
  • Received:2019-04-09 Online:2020-03-01 Published:2020-03-08

摘要:

针对一般水下视频图像清晰化方法使图像失真、噪声放大以及视频播放中相邻帧出现闪烁跳跃等现象,提出了基于颜色空间的单幅水下图像清晰化方法和基于时空信息融合的水下视频清晰化方法。在研究单幅水下图像清晰化过程中,修正了传统方法中透射率估计偏大的现象,并采用暗通道先验与颜色饱和度相结合的方式对背景光进行修正。针对视频播放中相邻帧出现闪烁跳跃现象,将时间、空间信息融合,通过插值和取平均的方式估计出更稳定的透射率。实验结果表明:本文方法在对水下视频图像清晰化处理方面效果良好,同时视频的连续性和平滑性也得到了较好的处理。

关键词: 信息处理技术, 水下视频图像, 颜色空间, 时空信息, 背景光, 透射率

Abstract:

The general method to sharp the underwater video image is vulnerable to provoking issues such as image distortion, noise amplification, and the flicker and jump of adjacent frames in video playback. To overcome these disadvantages, a single color method based on color space as well as the underwater image sharpening method and an underwater video sharpening method based on spatiotemporal information fusion are proposed. In the process of clearing the single underwater image, the phenomenon that the transmittance is estimated to be large in traditional method is polished, and the combination of dark channel prior and color saturation is adopted in order to polish the background light. For the phenomenon of flicker and jump in adjacent frames in video playback, the time and space information are fused, and the more stable transmittance is estimated by interpolation and averaging. The experimental results show that the proposed underwater video sharpening method works effectively in the clearing of underwater video images, resulting in well-processed continuity and smoothness of the video.

Key words: information processing technology, underwater video image, color space, space-time information, background light, transmittance

中图分类号: 

  • TP391.4

图1

水下图像成像示意图"

图2

水下图像及其形成的雾线"

图3

水下视频透射率值流程图"

图4

水下图像对比度增强结果图"

图5

单幅水下图像复原效果对比"

图6

单幅水下图像复原效果对比"

图7

水下视频复原效果对比"

图8

水下视频复原效果对比"

表1

水下单幅图像客观评价"

组别

评价

指标

算法
HeCLAHEMSRCR本文
1gˉ2.304 86.768 33.067 83.859 9
H14.635 017.723 014.059 216.644 7
EAV8.746 425.462 412.248 614.522 4
2gˉ3.732 410.973 75.076 05.739 3
H15.132 017.053 314.955 315.689 7
EAV18.503 855.968 324.998 433.231 6

表2

水下视频客观评价"

组别方法评价指标第99帧第103帧第105帧
1文献[5]gˉ1.407 02.740 23.272 8
H14.059 414.310 614.246 5
EAV6.524 011.089 613.080 5
逐帧处理gˉ1.247 71.605 71.848 5
H14.519 914.990 115.212 2
EAV6.278 77.483 78.508 5
本文算法gˉ1.207 51.538 21.776 6
H14.352 914.846 015.046 3
EAV6.217 07.417 28.391 8
方法评价指标第50帧第59帧第70帧
2文献[5]gˉ4.628 54.467 74.266 9
H13.282 813.291 213.584 1
EAV16.887 715.506 414.705 5
逐帧处理gˉ7.182 66.643 36.714 7
H14.768 214.747 914.850 5
EAV26.987 023.520 623.724 2
本文算法gˉ6.635 86.294 86.261 9
H14.459 614.355 014.442 4
EAV24.070 921.966 821.806 7
1 徐岩, 孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报: 工学版, 2018, 48(6): 1895-1903.
Xu Yan, Sun Mei-shuang. Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1895-1903.
2 李一兵, 付强, 张静. 水下模糊图像参数估计复原方法[J]. 吉林大学学报: 工学版, 2013, 43(4): 1133-1138.
Li Yi-bing, Fu Qiang, Zhang Jing. Underwater blurred image restoration based on parameter estimation[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4): 1133-1138.
3 John J, Wilscy M. Enhancement of weather degraded video sequences using wavelet fusion[C]∥IEEE International Conference on Cybernetic Intelligent Systems, London, UK, 2008: 1-6.
4 Yoon I, Kim S, Kim D, et al. Adaptive defogging with color correction in the HSV color space for consumer surveillance system[J]. IEEE Transactions on Consumer Electronics, 2012, 58(1): 111-116.
5 Qing C, Yu F, Xu X, et al. Underwater video dehazing based on spatial-temporal information fusion[J]. Multidimensional Systems & Signal Processing, 2016, 27(4): 909-924.
6 Mcglamery B L. A computer model for underwater camera systems[J]. Proc Spie, 1980(208): 221-231.
7 杨淼, 纪志成. 基于模糊形态筛和四元数的水下彩色图像增强[J]. 仪器仪表学报, 2012, 33(7): 1601-1605.
Yang Miao, Ji Zhi-cheng. Underwater color image enhancement based on fuzzy morphological sieve and quaternion[J]. Chinese Journal of Scientific Instrument, 2012, 33(7): 1601-1605.
8 黄冬梅, 宋巍, 王龑, 等. 一种基于相对全局直方图拉伸的浅海水下图像增强方法[P]. 中国CN107067386 A, 2017⁃04⁃24.
9 Berman D, Treibitz T, Avidan S. Non-local image dehazing[C]∥Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 1674-1682.
10 Wang M, Mai J, Liang Y, et al. Component-based distributed framework for coherent and real-time video dehazing[C]∥IEEE International Conference on Computational Science and Engineering, Guangzhou, China, 2017: 321-324.
11 窦易文, 周鸣争, 唐肝翌, 等. 焦点引导的带颜色恢复的多尺度Retinex算法[J]. 计算机工程与应用,2013, 49(2): 207-210.
Dou Yi-wen, Zhou Ming-zheng, Tang Gan-yi, et al. Focus-guided multi-scale Retinex algorithm with color restoration[J]. Computer Engineering and Applications, 2013, 49(2): 207-210.
12 He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]∥Computer Vision and Pattern Recognition, 2009, Miami, Florida, USA, 2009: 1956-1963.
13 Hitam M S, Awalludin E A, Wan N J H W Y, et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]∥International Conference on Computer Applications Technology, Bali, Indonesia, 2013: 1-5.
[1] 刘富, 权美静, 王柯, 刘云, 康冰, 韩志武, 侯涛. 仿蝎子振源定位机理的位置指纹室内定位方法[J]. 吉林大学学报(工学版), 2019, 49(6): 2076-2082.
[2] 于晓辉,张志成,李新波,孙晓东. 基于状态空间模型的指数衰减正弦信号参数估计[J]. 吉林大学学报(工学版), 2019, 49(6): 2083-2088.
[3] 马子骥,卢浩,董艳茹. 双通道单图像超分辨率卷积神经网络[J]. 吉林大学学报(工学版), 2019, 49(6): 2089-2097.
[4] 郭继昌,吴洁,郭春乐,朱明辉. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报(工学版), 2019, 49(5): 1726-1734.
[5] 曹运合,曾丽,王宇. 基于特征空间的子阵级自适应和差波束测角方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1735-1744.
[6] 卢洋,王世刚,赵文婷,赵岩. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J]. 吉林大学学报(工学版), 2019, 49(5): 1715-1725.
[7] 董超,刘晶红,徐芳,王仁浩. 光学遥感图像舰船目标快速检测方法[J]. 吉林大学学报(工学版), 2019, 49(4): 1369-1376.
[8] 王柯俨,胡妍,王怀,李云松. 结合天空分割和超像素级暗通道的图像去雾算法[J]. 吉林大学学报(工学版), 2019, 49(4): 1377-1384.
[9] 托乎提努尔,张海龙,王杰,王娜,冶鑫晨,王万琼. 基于图形处理器的高速中值滤波算法[J]. 吉林大学学报(工学版), 2019, 49(3): 979-985.
[10] 付银娟,李勇,徐丽琴,张昆辉. NLFM⁃Costas射频隐身雷达信号设计及分析[J]. 吉林大学学报(工学版), 2019, 49(3): 994-999.
[11] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[12] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[13] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[14] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[15] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!