吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (2): 435-441.doi: 10.13229/j.cnki.jdxbgxb20200310

• 车辆工程·机械工程 • 上一篇    

基于锂离子电池线性化模型的电流传感器故障诊断

潘凤文(),弓栋梁,高莹(),徐明伟,麻斌   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2020-05-10 出版日期:2021-03-01 发布日期:2021-02-09
  • 通讯作者: 高莹 E-mail:Panfw15@mails.jlu.edu.cn;gaoying@jlu.edu.cn
  • 作者简介:潘凤文(1981-),男,博士研究生.研究方向:动力系统仿真与控制.E-mail:Panfw15@mails.jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFB0100300)

Fault diagnosis of current sensor based on linearization model of lithium ion battery

Feng-wen PAN(),Dong-liang GONG,Ying GAO(),Ming-wei XU,Bin MA   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2020-05-10 Online:2021-03-01 Published:2021-02-09
  • Contact: Ying GAO E-mail:Panfw15@mails.jlu.edu.cn;gaoying@jlu.edu.cn

摘要:

为了对锂离子电池输入电流传感器的故障进行诊断,采用耦合了电池集总热力学模型的一阶Thevenin等效电路模型,基于该模型设计了滑模观测器用于故障诊断策略研究。首先,对非线性参变锂离子电池模型进行线性化,建立了满足整个运行工况运转精度的线性参变锂离子电池模型。然后,对线性参变锂离子电池模型进行重组变换,使原系统中的作为输入的电流在变换后作为新系统的输出。基于变换的新系统,设计了基于温度估计误差修正的滑模观测器用于新系统中输出电流的估计。之后,设计了基于范数的残差评价函数。最后,仿真结果表明了线性化模型的可行性,基于该模型所设计的故障诊断策略能快速检测到输入电流传感器故障的发生,从而验证了本文方法的有效性。

关键词: 动力工程, 锂离子电池, 模型线性化, 电流传感器, 滑模观测器, 故障诊断

Abstract:

In order to diagnose the fault of the input current sensor of the lithium-ion (Li-ion) battery, a linear first-order Thevenin equivalent circuit model of the Li-ion battery, coupled with lumped thermodynamics model, is adopted. Based on this model, a sliding mode observer is designed for fault diagnosis strategy research. First, the nonlinear varying parameters Li-ion battery model is linearized to establish a linear varying parameters Li-ion battery model that satisfies the operating accuracy of the entire operating condition. Then, the linearized Li-ion battery model with varying parameter is recombined and transformed, so that the current in the original system as the input is transformed into the output of the new system. Third, based on the new system of transformation, a sliding mode observer based on temperature estimation error correction is designed to estimate the output current in the new system. Finally, a residual evaluation function based on norm is designed. Simulation results show that the linearized model is feasible; the fault diagnosis strategy designed based on the model can quickly detect the occurrence of input current sensor faults, thus verifying the effectiveness of the proposed fault diagnosis method.

Key words: power engineering, lithium-ion battery, model linearization, current sensor, sliding mode observer, fault diagnosis

中图分类号: 

  • TM912

图1

等效电路模型"

表1

电池参数"

参数充电(I<0)放电(I>0)
Uocv1.19+0.09SOC+0.001T1.19+0.09SOC+0.001T
R00.004-0.000042T0.004-0.000044T
R10.008-0.000022T-0.0036SOC0.0016-0.000025SOCT
C115001500

图2

电池输出电压"

图3

电池温度"

图4

输入电流与估计电流"

图5

电流残差"

图6

残差评价函数"

1 苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2): 225-236.
Su Wei, Zhong Guo-bin, Shen Jia-ni, et al. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 225-236.
2 杨坤, 杨林, 施一新, 等. 电动汽车动力电池组单点绝缘故障定位方法[J]. 汽车工程, 2017, 39(10): 1136-1140.
Yang Kun, Yang Lin, Shi Yi-xin, et al. A single-point insulation fault locating scheme for power battery pack in electric vehicle[J]. Automotive Engineering, 2017, 39(10): 1136-1140.
3 He H, Liu Z, Hua Y. Adaptive extended kalman filter based fault detection and isolation for a lithium-ion battery pack[J]. Energy Procedia, 2015, 75: 1950-1955.
4 Liu Z, He H. Model-based sensor fault diagnosis of a lithium-ion battery in electric vehicles[J]. Energies, 2015, 8(7): 6509-6527.
5 Biron Z A, Pisu P, Ayalew B. Observer-based diagnostic scheme for lithium-ion batteries[C]∥ASME 2015 Dynamic Systems and Control Conference, New York, 2015: 1-7.
6 Dey S, Biron Z A, Tatipamula S, et al. Model-based real-time thermal fault diagnosis of Lithium-ion batteries[J]. Control Engineering Practice, 2016, 56: 37-48.
7 Dey S, Mohon S, Pisu P, et al. Sensor fault detection, isolation, and estimation in lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2141-2149.
8 Xiong R, Yu Q, Shen W, et al. A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34(10): 9709-9718.
9 Lin X, Kim Y, Mohan S, et al. Modeling and estimation for advanced battery management[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2(1): 393-426.
10 Suozzo C, Onori S, Rizzoni G. Model-based fault diagnosis for NiMH battery[C]∥ASME 2008 Dynamic Systems and Control Conference, New York, 2008: 1075-1081.
11 Marcicki J, Onori S, Rizzoni G. Nonlinear fault detection and isolation for a lithium-ion battery management system[C]∥ASME 2010 Dynamic Systems and Control Conference, New York, 2010: 607-614.
12 Li M F, Chen W, Wu H, et al. Robust state of charge estimation of lithium-ion batteries via an iterative learning observer[C]∥SAE Technical Paper, 2012-01-0659.
13 Sidhu A, Izadian A, Anwar S. Adaptive nonlinear model-based fault diagnosis of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2014, 62(2): 1002-1011.
14 葛云龙, 陈自强, 郑昌文. UTSTF 锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报: 工学版, 2018, 52(6): 1223-1230.
Ge Yun-long, Chen Zi-qiang, Zheng Chang-wen. Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1223-1230.
15 潘凤文, 麻斌, 高莹, 等. 奇偶空间法用于电动车锂离子电池传感器故障诊断[J]. 汽车工程, 2019, 41 (7): 831-838.
Pan Feng-wen, Ma Bin, Gao Ying, et al. Parity space approach for fault diagnosis of lithium-ion battery sensor for electric vehicle[J]. Automotive Engineering, 2019, 41(7): 831-838.
16 Sidhu A, Izadian A, Anwar S. Model-based adaptive fault diagnosis in lithium ion batteries: a comparison of linear and nonlinear approaches[C]∥AE Technical Paper, 2017-01-1192.
17 Cambron D C, Cramer A M. A lithium-ion battery current estimation technique using an unknown input observer[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 6707-6714.
18 柳应全, 鲁军勇, 龙鑫林, 等. 储能用蓄电池模型参数的动态辨识[J]. 国防科技大学学报, 2019, 41(5): 87-92.
Liu Ying-quan, Lu Jun-yong, Long Xin-lin, et al. Dynamic identification of model parameters for energy storage batteries[J]. Journal of National University of Defense Technology, 2019, 41(5): 87-92.
19 Cheng K W E, Divakar B P, Wu H, et al. Battery-management system (BMS) and SOC development for electrical vehicles[J]. IEEE Transactions on Vehicular Technology, 2010, 60(1): 76-88.
20 Miao Z, Xu L, Disfani V R, et al. An SOC-based battery management system for microgrids[J]. IEEE Transactions on Smart Grid, 2013, 5(2): 966-973.
21 Bhangu B S, Bentley P, Stone D A, et al. Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54(3): 783-794.
22 He H, Xiong R, Fan J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598.
23 Ablay G. Online condition monitoring of battery systems with a nonlinear estimator[J]. IEEE Transactions on Energy Conversion, 2013, 29(1): 232-239.
[1] 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583.
[2] 张根保,李浩,冉琰,李裘进. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5): 1617-1626.
[3] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[4] 宋大凤, 李广含, 张琳, 潘冰, 曾小华, 彭宇君, 王庆年. 模糊逻辑在混合动力汽车电机故障检测中的应用[J]. 吉林大学学报(工学版), 2016, 46(2): 354-359.
[5] 欧阳丹彤,迟晋进,王晓宇,赵相福,孟祥宇. 一种高阶离散事件系统的诊断方法[J]. 吉林大学学报(工学版), 2015, 45(2): 562-568.
[6] 陶涛,徐洪泽. 高速列车浸入与不变自适应容错控制方法[J]. 吉林大学学报(工学版), 2015, 45(2): 554-561.
[7] 宋宝玉,解志杰,张锋,王瑞泽,郝明晖,苏代忠. 基于角度域同步平均和阶次分析的低速斜齿轮故障诊断[J]. 吉林大学学报(工学版), 2015, 45(2): 454-459.
[8] 赵博, 李成浩, 李元春. 基于故障在线估计的可重构机械臂分散容错控制[J]. 吉林大学学报(工学版), 2014, 44(6): 1729-1735.
[9] 陈燕虹, 吴伟静, 刘宏伟, 沈帅, 李策园, 耿焕亮. 纯电动汽车电池箱的热特性[J]. 吉林大学学报(工学版), 2014, 44(4): 925-932.
[10] 解方喜, 于泽洋, 刘思楠, 曹晓峰, 贾贵起, 洪伟. 喷射压力对燃油喷雾和油气混合特性的影响[J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509.
[11] 吴坚, 赵阳, 何睿. 基于支持向量机回归算法的电子机械制动传感器系统故障诊断[J]. 吉林大学学报(工学版), 2013, 43(05): 1178-1183.
[12] 孙万臣, 孙士龙, 王晓丹, 李国良, 赖春杰. 燃料挥发性对高压共轨柴油机微粒排放粒度分布的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 619-625.
[13] 张彩萍, 姜久春. 用基于遗传优化的扩展卡尔曼滤波算法辨识电池模型参数 [J]. , 2012, (03): 732-737.
[14] 郝研, 王太勇, 万剑, 张攀, 刘路. 基于经验模式分解和广义维数的机械故障诊断[J]. 吉林大学学报(工学版), 2012, 42(02): 392-396.
[15] 周雅夫, 沈晓勇, 连静, 李骏, 刘明辉, 赵子亮. 车用驱动电机无电流传感器控制[J]. 吉林大学学报(工学版), 2012, 42(01): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!