吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (10): 2294-2299.doi: 10.13229/j.cnki.jdxbgxb20210490

• 车辆工程·机械工程 • 上一篇    

微通道低温换热器流动传热性能

徐振军1(),王浩1,2,王银成3,张诺2,陈孟1,李清清1   

  1. 1.青岛农业大学 建筑工程学院,山东 青岛 266300
    2.青岛工学院 机电工程学院,山东 青岛 266300
    3.天津商业大学 机械工程学院,天津 300133
  • 收稿日期:2021-06-01 出版日期:2022-10-01 发布日期:2022-11-11
  • 作者简介:徐振军(1980-),男,副教授,博士.研究方向:强化传热和建筑节能.E-mail:xuzhenjun@qau.edu.cn
  • 基金资助:
    国家自然科学基金项目(51608290);山东省自然科学基金项目(ZR2021ME051);青岛农业大学高层次人才启动基金项目(631019)

Flow heat transfer performance of microchannel low temperature heat exchanger

Zhen-jun XU1(),Hao WANG1,2,Yin-cheng WANG3,Nuo ZHANG2,Meng CHEN1,Qing-qing LI1   

  1. 1.College of Civil Engineering&Architecture,Qingdao Agricultural University,Qingdao 266300,China
    2.Mechanical and Electrical Engineering,Qingdao Institute of Technology,Qingdao 266300,China
    3.School of Mechanical Engineering,Tianjin University of Commerce,Tianjin 300133,China
  • Received:2021-06-01 Online:2022-10-01 Published:2022-11-11

摘要:

基于微通道换热器占地小、换热效率高等优点和在微电子领域、工业冷藏、电动汽车空调等领域应用广泛的现状,建立了微通道低温换热器的物理模型和数学模型,并对模型进行了求解。针对水力直径小于1 mm的微通道低温换热器的流动换热性能,研究了在改变入口流速以及不同宽高比的情况下,对换热器沿程的阻力压降、壁面温度、通道出口流体温度、摩擦因数的影响。研究结果表明,不同宽高比对以上各种参数都有明显的影响。微通道压降随着流速的增大而增大,而且压降增大趋势逐渐加大。壁面温度、通道流体出口温度、摩擦因数等都随着流速的增大而减小,最后都是趋向于稳定。宽高比为4的通道的参数值比宽高比为1的各项参数值普遍偏大,宽高比对微通道换热器的换热性能有着较大的影响。

关键词: 动力工程, 工程热物理, 微通道, 入口流速, 宽高比, 低温换热器

Abstract:

Based on the perfomance of small volume and high heat exchange efficiency for the microchannel heat exchanger and widely use in the fields of microelectronics, industrial refrigeration, electric vehicle air conditioning and so on, the physical model and mathematical model of microchannel low temperature heat exchanger are established and solved in the paper. To reveal the flow and heat transfer performance of microchannel low-temperature heat exchanger with hydraulic diameter less than 1 mm, the effects of changing inlet velocity and different aspect ratio on the resistance pressure drop, wall temperature, channel outlet fluid temperature and friction coefficient of the heat exchanger are studied. The results show that the above parameters were obviously effected by different aspect ratios. The microchannel pressure drop increases with the increase of flow velocity, and the increasing trend of pressure drop increases. The wall temperature, channel fluid outlet temperature and friction coefficient decrease with the increase of flow velocity, and finally tend to be stable. The parameter values of the channel with aspect ratio of 4 are generally larger than those of the channel with aspect ratio of 1. The aspect ratio has a great impact on the heat transfer performance of the microchannel heat exchanger.

Key words: power engineering, engineering thermophysics, microchannel, inlet velocity, aspect ratio, low temperature heat exchanger

中图分类号: 

  • TB61

表1

微通道换热器的结构参数"

参 数正方形截面长方形截面
长×宽×高40 mm×4 mm×1 mm40 mm×4 mm×1 mm
通道数53
微通道宽0.5 mm0.25 mm
微通道长0.5 mm1 mm

图1

整体网格的网格剖分剖分图"

图2

边界层网格的网格剖分"

图3

入口流速对微通道压降的影响"

图4

入口流速对微通道壁面温度的影响"

图5

入口流速对于流体出口温度的影响"

图6

入口流速对摩擦因数等影响"

图7

入口流速对雷诺数的影响"

1 梁朋. 矩形微通道内的流动与压降特性研究[D]. 北京:北京交通大学机械与电子控制工程学院, 2017.
Liang Peng. The characteristics of flow and pressure drop in rectangular microchannel[D]. Beijing: School of Mechanical, Electronic and Control Engineering,Beijing Jiaotong University, 2017.
2 王剑鹏, 秦四成, 杨立光, 等. 装载机液压系统的传热仿真分析[J].吉林大学学报: 工学版, 2016, 46(1): 153-158.
Wang Jian-peng, Qin Si-cheng, Yang Li-guang, et al. Simulation analysis of heat transfer in the hydraulic system of loader[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(1): 153-158.
3 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(): 10-15.
Ge Yang, Jiang Wei-ting. The research progress and application of the micro channel heat exchanger[J]. Chemical Industry and Engineering Progess, 2016, 35(Sup.1): 10-15.
4 刘英楠. 微通道换热器的数值模拟[D]. 大连:大连理工大学化工学院, 2016.
Liu Ying-nan. The numerical simulation of micro-channel heat exchanger[D]. Dalian:School of Chemical Engineering,Dalian University of Technology, 2016.
5 吴秋瑜. 凹穴型微通道换热器结构设计与性能研究[D]. 广州:华南理工大学机械与汽车工程学院, 2017.
Wu Qiu-yu. Structural design and study on performance offlow and heat transfer of complex microchannel heat exchanger with reentrant cavitives[D]. Guangzhou: School of Machanical & Automotive Engineering, South China University of Technology,2017.
6 范凌灏. 矩形微通道内流动传热特性的数值模拟及结构优化[D]. 济南:山东大学能源与动力工程学院, 2020.
Fan Ling-hao. Numerical analysis and structural optimization of flow and heat transfer characteristics candidate in rectangular microchannels[D]. Jinan: School of Energy and Power Engineering,Shandong University, 2020.
7 盛伟, 刘鹏鹏, 丁国良. 微通道换热器结霜性能的试验研究[J]. 流体机械, 2017, 45(1): 60-65.
Sheng Wei, Liu Peng-peng, Ding Guo-liang. Experimental research on frost performance of microchannel heat exchanger[J]. Fluid Machinery, 2017, 45(1): 60-65.
8 熊通, 晏刚, 樊超超, 等. 微通道换热器两相流分布研究现状与展望[J]. 制冷学报, 2021, 42(1): 23-35.
Xiong Tong, Yan Gang, Fan Chao-chao, et al. Review on research status and prospects of two-phase flow distribution in microchannel heat exchanger[J]. Journal of Refrigeration, 2021, 42(1): 23-35.
9 巫江虹, 谢方, 刘超鹏, 等. 电动汽车热泵空调系统微通道换热器适应性研究[J]. 机械工程学报, 2012, 48(14): 141-147.
Wu Jiang-hong, Xie Fang, Liu Chao-peng, et al. Adaptability research on micro-channel heat exchanger appued to heat pump air conditioning system for electrical vehicle[J]. Journal of Machanical Engineering, 2012, 48(14): 141-147.
10 张天一. 超临界二氧化碳微通道换热器优化分析研究[D]. 北京:华北电力大学核科学与工程学院, 2021.
Zhang Tian-yi. Optimization analysis of supercritical carbon dioxide microchannel heat exchanger[D]. Beijing:School of Nuclear Science and Engineering,North China Electric Power University, 2021.
11 翟玉玲. 复杂结构微通道热沉流动可视化及传热过程热力学分析[D]. 北京:北京工业大学环境与能源学院, 2015.
Zhai Yu-ling. Thermodynamic analysis of enhanced heat transfer process in microchannel heat sinks with complex structure[D]. Beijing: School of Environment and Energy,Beijing University of Technology, 2015.
12 白鹏飞, 汤勇, 陆龙生, 等. 以水为工质的铜基微通道热沉的流态可视化与传热特性[J]. 吉林大学学报: 工学版, 2010, 40(4): 959-964.
Bai Peng-fei, Tang Yong, Lu Long-sheng, et al. Investigation of flow pattern visualization and heat transfer characteristics on a Cu-base micro-channel heat sink with water coolant[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(4): 959-964.
13 席雷, 徐亮, 高建民, 等. 厚壁矩形带肋通道内蒸汽流动及传热特性[J].吉林大学学报: 工学版, 2018, 48(3): 752-759.
Xi Lei, Xu Liang, Gao Jian-min, et al. Flow and heat transfer characteristics of steam in thick-wall rectangular ribbed channel[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 752-759.
[1] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[2] 徐振军,王浩,赵开元,郝博轶,李清清,王常浩. 复合太阳能的燃气机热泵热力学性能[J]. 吉林大学学报(工学版), 2022, 52(8): 1759-1763.
[3] 赵同宾,吴宜胜,段耀宗,黄震,韩东. RP-3航空煤油的润滑特性和改善措施[J]. 吉林大学学报(工学版), 2022, 52(3): 533-540.
[4] 潘凤文,弓栋梁,高莹,徐明伟,麻斌. 基于锂离子电池线性化模型的电流传感器故障诊断[J]. 吉林大学学报(工学版), 2021, 51(2): 435-441.
[5] 孟育博, 李丕茂, 张幽彤, 王志明. 共轨系统压力波动和多次喷射油量偏差的抑制[J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[6] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[7] 孟育博, 张幽彤, 王志明, 张晓晨, 樊利康, 李涛. 压电喷油器压电执行器热-电-机械耦合迟滞特性[J]. 吉林大学学报(工学版), 2018, 48(2): 480-485.
[8] 吴志军, 赵文伯, 张青. 基于热氛围燃烧器的湍流射流起升火焰基础研究进展[J]. 吉林大学学报(工学版), 2016, 46(6): 1881-1891.
[9] 崔金生, 侯绪研, 邓宗全, 潘万竞, 姜生元. 真空颗粒系统有效导热系数测量试验台研制及试验[J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[10] 齐子姝, 高青, 刘研, 白莉. 地能利用热泵系统模型计算及其多年运行工况分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1811-1816.
[11] 田桂中, 刘之岭, 周宏根, 宋江超, 朱涛. 家蚕前部丝腺准静态轴向拉伸力学特性[J]. 吉林大学学报(工学版), 2015, 45(3): 872-877.
[12] 解方喜, 于泽洋, 刘思楠, 曹晓峰, 贾贵起, 洪伟. 喷射压力对燃油喷雾和油气混合特性的影响[J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509.
[13] 孙万臣, 孙士龙, 王晓丹, 李国良, 赖春杰. 燃料挥发性对高压共轨柴油机微粒排放粒度分布的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 619-625.
[14] 齐子姝, 高青, 刘研, 于鸣. 联供模式地下换热器温变及其热泵效能分析[J]. 吉林大学学报(工学版), 2012, 42(02): 339-343.
[15] 白鹏飞,汤勇,陆龙生,唐彪. 以水为工质的铜基微通道热沉的流态可视化与传热特性[J]. 吉林大学学报(工学版), 2010, 40(04): 959-0964.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!