吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (3): 674-682.doi: 10.13229/j.cnki.jdxbgxb.20220457
• 材料科学与工程 • 上一篇
魏素凤1(),孙殿东2,张君宇3,王瑜喆3,李恩泽1,王国勇3()
Su-feng WEI1(),Dian-dong SUN2,Jun-yu ZHANG3,Yu-zhe WANG3,En-ze LI1,Guo-yong WANG3()
摘要:
为寻求廉价、性能优异且反应稳定的碱性析氢催化剂以代替贵金属,以过渡金属Ni、Co为研究对象,通过一步煅烧处理得到Ni-Co硫/磷化物催化剂,借助X射线检测和能谱分析等方法验证了催化剂的成功制备。电化学测试结果表明,由于阴/阳离子之间的协同作用,所制备的Ni-Co硫/磷化物的催化活性和电荷转移速率均超过Ni-Co氢氧化物/硫化物/磷化物。Ni-Co硫/磷化物仅需要106 mV的过电势就可以达到10 mA·cm-2的电流密度,循环寿命超过20 h。
中图分类号:
1 | Cao S, Wang C J, Fu W F, et al. Metal phosphides as Co-Catalysts for photocatalytic and photoelectrocatalytic water splitting[J]. ChemSusChem, 2017, 10(22): 4306-4323. |
2 | Guo L, Zhao Y, Yao Z. Mechanical mixtures of metal oxides and phosphorus pentoxide as novel precursors for the synthesis of transition-metal phosphides[J]. Dalton Trans, 2016, 45(3): 1225-1232. |
3 | Hong L F, Guo R T, Yuan Y, et al. Recent progress of transition metal phosphides for photocatalytic hydrogen evolution[J]. ChemSusChem, 2020, 14(2): 539-557. |
4 | Li R, Zang J, Li W, et al. Three-dimensional transition metal phosphide heteronanorods for efficient overall water splitting[J]. ChemSusChem, 2020, 13(14): 3718-3725. |
5 | 王凤武, 朱传高, 方文彦,等. 有机体系中制备纳米TiO2掺杂Ni电极及其性能测试[J]. 吉林大学学报:工学版, 2006(6): 861-865. |
Wang Feng-wu, Zhu Chuan-guo, Fang Wen-yan, et al. Preparation of TiO2 nanodoped Ni electrodes in organic systems and their performance tests[J]. Journal of Jilin University (Engineering Edition), 2006(6): 861-865. | |
6 | Yin J, Wu B, Wang Y, et al. Novel elastic, lattice dynamics and thermodynamic properties of metallic single-layer transition metal phosphides: 2H-M 2P (Mo2P, W2P, Nb2P and Ta2P)[J]. Journal of Physics: Condensed Matter, 2018, 30(13): No. 135701. |
7 | Su P, Li Y, Zhang J, et al. Characterization and chemical fixation of stainless steel pickling residue using sodium sulfide hydrate[J]. Environmental Science and Pollution Research, 2019, 26(10): 10240-10250. |
8 | Kong D S, Cha J J, Wang H, et al. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction[J]. Energy & Environmental Science, 2013, 6(12): 3553-3558. |
9 | Peng S, Li L, Han X, et al. Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution[J]. Angewandte Chemie, 2014, 126(46): 12802-12807. |
10 | Pan Y, Chen Y, Lin Y, et al. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4: 14675-14686. |
11 | Xin Y, Kan X, Gan L, et al. Heterogeneous Bimetallic Phosphide/Sulfide Nanocomposite for Efficient Solar-Energy-Driven Overall Water Splitting[J]. ACS Nano, 2017, 11: 10303-10312. |
12 | Acevedo M, Stone M, Schmidt J, et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide[J]. Nature Materials, 2015, 14: 1245-1251. |
13 | Liu W, Hu E, Jiang H, et al. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide[J]. Nature Communications, 2016, 7: No. 10771. |
14 | Xiao J, Zeng X, Chen W, et al. High electrocatalytic activity of self-standing hollow NiCo2S4 single crystalline nanorod arrays towards sulfide redox shuttles in quantum dot-sensitized solar cells[J]. Chemical Communications, 2013, 49: 11734-11736. |
15 | Yan X, Tian L, Chen X. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction[J]. Journal of Power Sources, 2015, 300: 336-343. |
16 | Feng Y, Yu X, Paik U. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution[J]. Chemical Communications, 2016, 52: 1633-1636. |
17 | Gong Y Q, Xu Z F, Pan H L, et al. A 3D well-matched electrode pair of Ni-Co-S//Ni-Co-P nanoarrays grown on nickel foam as a high-performance electrocatalyst for water splitting[J]. Journal of Materials Chemistry A, 2018, 6: 12506-12514. |
18 | Kim J, Li X, Kang B, et al. High-rate performance of a mixed olivine cathode with off-stoichiometric composition[J]. Chemical Communications, 2015, 51: 13279-13282. |
19 | Xin Y, Kan X, Gan L Y, et al. Heterogeneous bimetallic phosphide/sulfide nanocomposite for efficient solar-energy-driven overall water splitting[J]. ACS nano, 2017, 11(10): 10303-10312. |
20 | Li Y, Jia B, Chen B, et al. MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting[J]. Dalton Transactions, 2018, 47(41): 14679-14685. |
21 | Feng Y, Yu X Y, Paik U. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution[J]. Chemical Communications, 2016, 52(8): 1633-1636. |
22 | Huang Z, Liu J, Xiao Z, et al. A MOF-derived coral-like NiSe@ NC nanohybrid: an efficient electrocatalyst for the hydrogen evolution reaction at all pH values[J]. Nanoscale, 2018, 10(48): 22758-22765. |
23 | Cheng X, Pan Z, Lei C, et al. A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities[J]. Journal of Materials Chemistry A, 2019, 7(3): 965-971. |
24 | Xu K, Ding H, Zhang M, et al. Regulating water‐reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution[J]. Advanced Materials, 2017, 29(28): No. 1606980. |
25 | Cabán-Acevedo M, Stone M L, Schmidt J R, et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide[J]. Nature Materials, 2015, 14(12): 1245-1251. |
26 | 张蕾, 张磊, 舒新前, 等. 核桃壳催化热解制取氢气[J]. 吉林大学学报: 工学版, 2008, 38(2): 287-291. |
Zhang Lei, Zhang Lei, Shu Xin-qian, et al. Catalytic pyrolysis of walnut shells for hydrogen production[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(2): 287-291. |
[1] | 许良,肖景厚,宋万万,周松. 碳纤维复合材料层合板三点弯曲疲劳性能[J]. 吉林大学学报(工学版), 2024, 54(2): 400-409. |
[2] | 许良,边钰博,周松,肖景厚. 高温水浸对T800/环氧树脂基复合材料性能的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1943-1950. |
[3] | 谢超,王起才,于本田,李盛,林晓旭,鲁志铭. 聚氨酯涂膜弹性模量的AFM测定及微观结构分析[J]. 吉林大学学报(工学版), 2023, 53(5): 1322-1330. |
[4] | 魏素凤,平昕,李春霖,王国勇. 氮掺杂Co/Co3O4@C核壳纳米粒子作为锂电池负极材料的性能[J]. 吉林大学学报(工学版), 2023, 53(2): 376-384. |
[5] | 邓海,王超,杨京浩,王利忠,王明辉,李志刚. 碳纤维增强热塑性复合材料研究进展[J]. 吉林大学学报(工学版), 2023, 53(1): 18-30. |
[6] | 卫宇璇,张明,刘佳,刘硕,路明雨,王洪雨. 基于模态缺陷的变刚度复合材料圆柱壳屈曲特性[J]. 吉林大学学报(工学版), 2022, 52(1): 91-100. |
[7] | 张霖, 赵宏伟, 杨倚寒, 马智超, 黄虎, 马志超. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析[J]. 吉林大学学报(工学版), 2013, 43(06): 1558-1565. |
[8] | 井琦,张文熊,刘晶冰. 热致聚酰胺液晶增韧尼龙6及共混物的形貌[J]. 吉林大学学报(工学版), 2011, 41(05): 1310-1316. |
[9] | 代汉达, 曲建俊, 庄乾兴. 模压工艺对CF+G/PEEK复合材料力学性能的影响[J]. 吉林大学学报(工学版), 2010, 40(02): 457-0460. |
[10] | 井琦, 张文熊, 刘晶冰. 热致聚酰胺液晶与尼龙6复合材料的相容性[J]. 吉林大学学报(工学版), 2010, 40(02): 452-0456. |
[11] | 井琦,张文熊,刘晶冰. 不添加相容剂的尼龙6 /热致液晶聚酰胺复合材料的热性能与结晶行为[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 287-0291. |
[12] | 刘秀奇,,邢贺钦3,张国,,王立艳4,金晶, . 废弃矿渣粉填充EPDM泡沫型复合材料的制备及其吸油特性[J]. 吉林大学学报(工学版), 2009, 39(01): 56-60. |
[13] | 李红姬,赫然,张万喜,孙国恩,张莉,牛永盛 . 纳米TiO2/EVA共混复合材料的制备及其性能[J]. 吉林大学学报(工学版), 2006, 36(05): 710-0714. |
[14] | 李朝辉,,连建设,李光玉. 柠檬酸与金属离子的摩尔比对溶胶凝胶法合成NiO/Ce0.8Gd0.2O1.9复合纳米粉的影响[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 79-0083. |
[15] | 孙国恩, 张莉, 李红姬, 张春玲, 梁继才, 张万喜. 纳米复合材料的结构与性能[J]. 吉林大学学报(工学版), 2005, 35(06): 577-0581. |
|