吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1528-1536.doi: 10.13229/j.cnki.jdxbgxb.20221223

• 车辆工程·机械工程 • 上一篇    

多主轴头数控机床虚拟仿真加工平台的构建方法

蔡安江(),王沛彭,王晨曦,李玲   

  1. 西安建筑科技大学 机电工程学院,西安 710055
  • 收稿日期:2022-11-29 出版日期:2024-06-01 发布日期:2024-07-23
  • 作者简介:蔡安江(1965-),男,教授,硕士.研究方向:数字化与智能化制造.E-mail:Cai_aj@163.com
  • 基金资助:
    教育部中国高校产学研创新基金项目(2021DZ022);陕西省自然科学基础研究计划重点项目(2019JZ-50)

Construction method of virtual simulation machining platform for CNC machine tools with multi-spindle heads

An-jiang CAI(),Pei-peng WANG,Chen-xi WANG,Ling LI   

  1. School of Mechanical and Electrical Engineering,Xi 'an University of Architecture and Technology,Xi' an 710055,China
  • Received:2022-11-29 Online:2024-06-01 Published:2024-07-23

摘要:

针对目前多主轴头数控机床在虚拟仿真加工过程中无法实现多主轴头切换调用的问题,提出了一种多主轴头数控机床虚拟仿真加工平台的构建方法。首先,根据多主轴头数控机床的多主轴头库创立虚拟轴,构建其各运动轴的拓扑结构,搭建虚拟数控机床的几何模型;其次,利用数控系统的宏和变量等进行二次开发,通过改变虚拟轴中各主轴头组件在虚拟数控机床结构项目树和几何模型中的位置得到宏程序,并通过宏调用指令将此更换主轴头宏程序作为子程序代替执行NC程序中更换主轴头的功能指令,使虚拟数控机床在执行更换主轴头指令时实际执行的是更换主轴头的宏程序,实现了多主轴头数控机床虚拟仿真加工过程中主轴头的动态切换调用;最后,应用该方法构建了UniForce6落地镗铣加工中心的虚拟仿真加工平台,并完成了某箱体零件的仿真加工。结果表明:该虚拟仿真加工平台可实现多个主轴头协同完成加工过程的连续仿真,符合实际加工工况,且在更换主轴头的过程中可检查干涉碰撞情况,进一步提高了多主轴头数控机床虚拟仿真加工的有效性。

关键词: 机械制造, 多主轴头数控机床, 虚拟轴, 拓扑结构, 宏程序, 连续仿真加工

Abstract:

Aiming at the problem that current the CNC machine tools with multi-spindle heads cannot realize the multi-spindle head switching call in the virtual simulation process, a method of constructing a virtual simulation processing platform of the multi-spindle CNC machine tool is proposed. Firstly, as a multi-spindle head library for CNC machine tools with multi-spindle heads, the virtual axis are created, the topology of each motion axis is constructed, and the geometric model of virtual CNC machine tools is constructed. Secondly, the macro and variables of the CNC system are used for secondary development. By changing the position of the spindle head components in the virtual CNC machine tool structure project tree and the geometric model, the macro program is obtained,and by the macro calls instructions, it is used as a subroutine replace performing the functional instructions for changing the spindle head in the NC program. So that when the command to replace the spindle head is executed, the virtual CNC machine tool actually executes the macro program of changing the spindle head, and the dynamic switching call of the spindle head during the virtual simulation processing of the multi-spindle head CNC machine tool is realized. Finally, using this method, the virtual simulation processing platform of UniForce6 floor boring and milling machining center was constructed, and the simulation processing of a box part was completed. The results show that the virtual simulation processing platform can realize the continuous simulation of multiple spindle heads, which meets the actual processing conditions, and can check the interference and collision situation when changing the spindle head, which further improves the effectiveness of the virtual simulation processing of the CNC machine tool.

Key words: mechanical manufacturing, CNC machine tools with multi-spindle heads, virtual axis, topology structure, macro program, continuous simulation machining

中图分类号: 

  • TG659

图 1

多主轴头数控机床虚拟仿真加工平台的构建流程"

图 2

多主轴头数控机床"

图 3

多主轴头虚拟数控机床的运动轴拓扑结构"

图 4

子程序调用示意图"

图 5

调用主轴头的过程图"

图 6

子程序流程图"

图 7

UniForce6虚拟数控机床的运动轴拓扑结构"

图 8

UniForce6虚拟数控机床的结构项目树"

图 9

UniForce6虚拟数控机床的几何模型"

图10

V轴(虚拟轴)组件配置示意图"

图11

刀具组件配置示意图"

图12

更换主轴头指令替换配置示意图"

表1

子程序包含的部分宏"

宏名作用
SaveUnits保存已激活的单元以在子程序之后恢复
UnitsMetric指定在子程序中被使用的单元
CaxisMachineMotionC轴运动
ProcessMotion运动执行

TurnOnOff

GagePivotOffset

打开/关闭轴偏置计算,0代表关闭,

1代表打开

ConnectCompName定义组件连接
ConnectToCompName

连接到组件,一般与宏ConnectCompName

配合使用,改变组件间的相互依附关系

ActiveTool激活刀具
PivotOffsetCompName定义计算轴偏置的组件名称
RestoreUnits储存单元
MacroVar参数传递

图 13

子程序的部分初始程序段"

图 14

卸载竖直主轴头的程序段"

图 15

装载水平主轴头的程序段"

图 16

减速器下箱体零件示意图"

图 17

调用竖直主轴头示意图"

图 18

竖直主轴头组件在结构项目树中的位置变化示意图"

图 19

竖直主轴头的卸载示意图"

图 20

调用水平主轴头示意图"

图 21

水平主轴头组件在结构项目树中的位置变化示意图"

图 22

自动比较报告"

1 胡涞,查俊,朱永生,等.基础装备制造及高档集成数控机床研究进展[J].中国机械工程,2021,32(16):1891-1903.
Hu Lai, Zha Jun, Zhu Yong-sheng, et al. Research progress in basic equipment manufacturing and high-grade integrated CNC machine tools[J]. China Mechanical Engineering, 2021,32(16): 1891-1903.
2 崔榕芳,陈蔚芳,潘立剑,等.基于遗传算法的多主轴头加工空行程轨迹规划[J].计算机集成制造系统,2022,28(2):507-517.
Cui Rong-fang, Chen Wei-fang, Pan Li-jian, et al. Empty travel trajectory planning of multi-spindle head processing based on genetic algorithm[J]. Computer Integrated Manufacturing System, 2022,28(2): 507-517.
3 吴志清.VERICUT虚拟机床技术在五轴加工中的应用研究[J].机床与液压,2016,44(16):66-68, 76.
Wu Zhi-qing. Application of VERICUT virtual machine tool in five axis processing[J]. Machine Tool and Hydraulic Pressure, 2016,44(16): 66-68, 76.
4 Yu D Y, Ding Z. Post-processing algorithm of a five-axis machine tool with dual rotary tables based on the TCS method[J]. The International Journal of Advanced Manufacturing Technology, 2019,102(9): 3937-3944.
5 Chen Y D, Wei H X, Wang T M. Three-dimensional tool radius compensation for a 5-Axis peripheral milling[J]. Advanced Science Letters, 2011, 4(8): 3093-3096.
6 Tang J Y, Yang X Y. Research on manufacturing method of planing for spur face-gear with 4-axis CNC planer[J]. The International Journal of Advanced Manufacturing Technology, 2016,82(5): 847-858.
7 Yang J H, Zhang D H, Wu B H, et al. A path planning method for error region grinding of aero-engine blades with free-form surface[J]. The International Journal of Advanced Manufacturing Technology, 2015,81(1): 717-728.
8 杨胜群,杨伟群,唐秀梅,等.VERICUT数控加工仿真技术[M].北京:清华大学出版社,2013:103-115.
9 唐清春,尹韶辉,王永强,等.非模态回转轴旋转角的优化方法[J].机械工程学报,2018,54(3):178-185.
Tang Qing-chun, Yin Shao-hui, Wang Yong-qiang, et al. Optimization method of rotation angle of nonmodal rotary axis[J]. Journal of Mechanical Engineering, 2018,54(3):178-185.
10 韦洪新,王智森,程发武.基于控制分布角的球面螺旋加工法研究[J].现代制造工程,2022,501(6):39-42.
Wei Hong-xin, Wang Zhi-sen, Cheng Fa-wu. Study on spherical helix processing method based on control distribution angle[J]. Modern Manufacturing Engineering, 2022,501 (6): 39-42.
[1] 巩亚东,丁明祥,李响,田近民. TC4钛合金材料铣削加工分析及参数优化[J]. 吉林大学学报(工学版), 2024, 54(4): 917-925.
[2] 董长斌,李龙坤,刘永平,裴王鹏. 非圆齿轮传动误差及齿侧间隙的数值模拟与试验[J]. 吉林大学学报(工学版), 2024, 54(4): 865-873.
[3] 吴飞,农皓业,马晨浩. 基于粒子群优化算法长短时记忆模型的刀具磨损预测方法[J]. 吉林大学学报(工学版), 2023, 53(4): 989-997.
[4] 郭静,桂林,侯威,李俊烨,朱志宝,孙立伟. 阀套交叉孔磨粒流精密加工质量分析[J]. 吉林大学学报(工学版), 2023, 53(12): 3367-3378.
[5] 宋林,王立平,吴军,关立文,刘知贵. 基于信息物理融合和数字孪生的可靠性分析[J]. 吉林大学学报(工学版), 2022, 52(2): 439-449.
[6] 宗芳,李宇暄,张慧永,高飞. 一带一路沿线配送中心选址模型[J]. 吉林大学学报(工学版), 2022, 52(11): 2592-2599.
[7] 薛锋,何传磊,黄倩,罗建. 多式轨道交通网络的耦合协调度[J]. 吉林大学学报(工学版), 2021, 51(6): 2040-2050.
[8] 刘永平,董长斌,魏永峭. 椭圆齿轮传动系统齿面接触与动态磨损分析[J]. 吉林大学学报(工学版), 2021, 51(5): 1620-1627.
[9] 李国龙,陶小会,徐凯,李喆裕. 数控机床转台位置相关几何误差的快速测量与辨识[J]. 吉林大学学报(工学版), 2021, 51(2): 458-467.
[10] 董长斌,刘永平,魏永峭,邓海青,许杰. 椭圆齿轮传动系统非线性动态特性分析[J]. 吉林大学学报(工学版), 2020, 50(2): 483-493.
[11] 赵云伟,耿德旭,刘晓敏,刘齐. 气动柔性六足机器人定半径转弯实现方法与稳定性[J]. 吉林大学学报(工学版), 2020, 50(2): 472-482.
[12] 段春争,张方圆,寇文能,魏斌. 高速硬切削表面白层马氏体相变[J]. 吉林大学学报(工学版), 2019, 49(5): 1575-1583.
[13] 罗开玉,邢月华,柴卿锋,吴世凯,尹叶芳,鲁金忠. 激光冲击强化对2Cr13不锈钢腐蚀 疲劳性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 850-858.
[14] 马芳武,陈实现,韩露,梁鸿宇,蒲永锋. 金属表面特征与金属⁃塑料直接连接强度的相关性[J]. 吉林大学学报(工学版), 2019, 49(3): 816-821.
[15] 鲁金忠,周婉婷,张圣洋,邵亦锴,王长雨,罗开玉. 激光冲击强化层数对6061⁃T6铝合金抗腐蚀性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 842-849.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!