吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 36-51.doi: 10.13229/j.cnki.jdxbgxb.20230334

• 车辆工程·机械工程 • 上一篇    下一篇

重型车扭转减振器匹配分析及试验验证

王凯峰1,2(),马星宇2,朱佳兴2,徐向阳1(),冯浩成2,雷雨龙3   

  1. 1.北京航空航天大学 交通科学与工程学院,北京 100191
    2.陕西法士特齿轮有限责任公司 汽车传动工程研究院,西安 710119
    3.吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2023-04-10 出版日期:2025-01-01 发布日期:2025-03-28
  • 通讯作者: 徐向阳 E-mail:wangkaifeng@fastgroup.com;xxy@buaa.edu.cn
  • 作者简介:王凯峰(1981-),男,高级工程师,博士研究生.研究方向:汽车变速器设计及应用,液压故障诊断与分析. E-mail: wangkaifeng@fastgroup.com
  • 基金资助:
    陕西省“两链”融合企业(院所)联合重点项目(2022LL-JB-21);陕西省秦创原“科学家+工程师”队伍建设支撑项目(2022KXJ-029)

Matching analysis and experimental verification of heavy-duty vehicle torsional shock absorbers

Kai-feng WANG1,2(),Xing-yu MA2,Jia-xing ZHU2,Xiang-yang XU1(),Hao-cheng FENG2,Yu-long LEI3   

  1. 1.School of Transportation Science and Engineering,Beihang University,Beijing 100191,China
    2.Automotive Transmission Engineering Research Institute,Shaanxi Fast Gear Co. ,Ltd. ,Xi'an 710119,China
    3.College of Automotive Engineering,Jilin University,Changchun 130022,China
  • Received:2023-04-10 Online:2025-01-01 Published:2025-03-28
  • Contact: Xiang-yang XU E-mail:wangkaifeng@fastgroup.com;xxy@buaa.edu.cn

摘要:

为研究集成于液力自动变速器内部的减振器在大吨位重型车辆上的匹配应用特性,以空载、半载、满载3种吨位的重型车辆及适配发动机参数为输入,建立了基于AMESim仿真平台的整车传动系统模型,利用该模型分析了固定油门开度、不同变速器挡位下的不同减振器扭转特性参数对整车传动系统匹配特性的影响,并通过扭振试验台对仿真模型的精确性进行了验证。结果表明:车重对减振器与整车的匹配特性有显著影响,不同车重对应的减振器等效刚度安全域值不同;不同挡位下减振器的作用效果有显著差异,减振器在高挡区时更容易放大输入转速的共振振幅;二级刚度扭转减振器可改善恶劣工况下的挡位变速器输入端转速波动,第1级扭转刚度相较于第2级扭转刚度对扭振的有益影响更大,通过分析不同阻尼力矩下的扭振结果确定了最小阻尼力矩。

关键词: 扭转减振器, 等效刚度, 扭转特性, 共振, 扭振匹配

Abstract:

In order to study the matching application characteristics of the shock absorber integrated in the AT (Automatic transmission) on the large-tonnage intelligent transportation equipment,the parameters of no-load,half-load and full-load heavy-duty vehicles and the adaptive engine were taken as the input, a complete vehicle transmission system model was established based on AMESim simulation platform. The influence of different damper torsional characteristic parameters at different transmission gears on the matching characteristics of the vehicle transmission system was analyzed in the fixed throttle opening and the accuracy of the simulation model was verified through a torsional vibration experimental platform.The results show that the vehicle weight has a significant impact on the matching characteristics of the shock absorber and the whole vehicle,and the equivalent stiffness safety region value of the shock absorber corresponding to different vehicle weights is different; The effect of the shock absorber at different gears is significantly different. When the shock absorber is at high gear,it is easier to amplify the resonance amplitude of the input speed; The second level torsional stiffness shock absorber can improve the speed fluctuation at the input end of the transmission in harsh working conditions,the first level torsional stiffness has a greater beneficial impact on torsional vibration compared to the second level torsional stiffness,the minimum damping moment was determined by analyzing the torsional vibration results under different damping moments.

Key words: torsional vibration damper, equivalent stiffness, torsional characteristic, resonance, torsional vibration matching

中图分类号: 

  • U463.2

图1

AT减振器安装环境图"

图2

某AT减振器分解结构图"

图3

强谐次(左)及主谐次(右)激励力矩相位图"

图4

扭转减振器及其扭振简化模型"

图5

怠速工况传动系统扭振模型"

图6

加速工况传动系统扭振模型"

图7

整车传动系统结构示意图"

图8

整车传动系统AMESim仿真模型"

图9

柴油机曲轴系离散简化模型"

表1

曲轴离散化参数"

惯量/(kg·m2数值刚度/107(N·m·rad-1数值
I10.276K13.495
I20.059K27.447
I30.225K31.102
I40.088K41.116
I50.177K51.091
I60.089K61.093
I70.227K71.124
I80.115K81.117
I90.279K91.117
I100.089K101.124
I110.177K111.093
I120.088K121.092
I130.222K131.116
I140.059K147.447
I150.016K155.344
I164.465

表2

整车及变速器基本信息"

信息及编号参数数值
整车1长×宽×高/m×m×m11.5×4.5×4.6
2迎风面高/m4.5
3迎风面宽/m4
4满载重量/t150
5轮胎半径/m0.97
6驱动形式6×4
7风阻系数0.65
8滚动阻力系数0.025
9路面附着系数0.7
10主减速比22

变速

11最大输入扭矩/(N·m)3 500
12最大输入转速/(r·min-12 500
13前进挡位数9
14离合器数6
15行星排数4

图10

单缸气缸压力曲线"

图11

各挡位车速的仿真计算值与实际值对比"

表3

仿真分析工况对照表"

挡位等效刚度/[N·m·(°)-1车重/t

2~9

350100(空载)
500100(空载)
650100(空载)
2~9350120(半载)
500120(半载)
650120(半载)
2~9350140(满载)
500140(满载)
650140(满载)

图12

各挡位波动转速过滤情况对比"

图13

不同等效刚度下的变速器输入端固有频率"

表4

不同等效刚度临界转速求解"

等效刚度

/[N·m·(°)-1

频率

/Hz

谐次
0.511.522.533.544.55
35070.98 5204 2602 8402 1301 7041 4181 2171 065946852
50074.18 8804 4402 9602 2201 7761 4821 2681 110986888
65077.29 3604 6803 1202 3401 8721 5441 3371 1701 040936

图14

不同等效刚度下的减振器扭振形态"

图15

不同车辆载重状态下扭振形态"

图16

第二级不同斜率的理想扭转特性曲线"

图17

第一级不同斜率的理想扭转特性曲线"

表5

6种不同二级线性扭转刚度减振器对应特性参数"

扭转行程角/(°)扭矩/(N·m)
第1种第2种第3种第4种第5种第6种
-12-4 200-4 200-4 200-4 200-4 200-4 200
-10(第1、4种)/-9(第2、5种)/-8(第3、6种)-2 600-2 322-2 064-2 580-1800-1 000
0000000
10(第1、4种)/9(第2、5种)/8(第3、6种)2 6002 3402 0802 58018001 000
124 2004 2004 2004 2004 2004 200

图18

6种不同二级线性扭转刚度减振器匹配计算结果"

图19

阻尼力矩的影响"

图20

扭转减振试验台"

图21

扭转减振器试验、仿真数据对比"

1 Sachs A G Z F, Bach S H.Systematic search for and vibratory assessment of new action principles for alternative rotary vibration decoupling systems in the passenger car driveline[J].Drive System Technique, 2004(6): 3-12.
2 Taehyun K, Hanlim S, Sungho H, et al.Analysis of dual mass flywheel using discrete arcspring model[J].Key Engineering Materials,2006, 326-328:1607-1610.
3 Steinel K.Clutch tuning to optimize noise and vibration behavior in trucks andbuses[C]∥SAE Paper,2000-3292.
4 吴虎威, 吴光强. 离心摆吸振器及其在大转角扭转减振器上的应用[J].汽车工程,2017(12):1409-1416.
Wu Hu-wei, Wu Guang-qiang. Centrifugal pendulum vibration absorber and its application in large angle torsional damper[J].Automotive Engineering,2017 (12): 1409-1416.
5 Prasad J S, Damodar N C, Naidu T S.Clutch hysteresis maximization for elimination of gear rattle in a passenger bus[C]∥SAE Paper,2010-0100.
6 Tsujiuchi N, Koizumi T'hara N, et a1. The Effects Of Clutch Damper in Idling Driveline Rattle[M].Berlin:Springer Science&Business Media,2013.
7 Bhagate R, Badkas A, Mohan K.Driveline torsional analysis and parametric optimization for reducing driveline rattle[C]∥SAE Paper,2015-2176.
8 吕良远. 离合器扭振对车内噪声影响研究[D].长春:吉林大学汽车工程学院,2020.
Liang-yuan Lyu.Research on the influence of clutch torsional vibration on vehicle interior noise [D]. Changchun: College of Automotive Engineering,Jilin University,2020.
9 吴虎威, 吴光强, 陈祥, 等. 新型三级刚度扭转减振器设计开发及性能分析[J].机械工程学报,2019,55: 75-83.
Wu Hu-wei, Wu Guang-qiang, Chen Xiang,et al. Design, development, and performance analysis of a new three-level stiffness torsional vibration damper [J]. Journal of Mechanical Engineering, 2019, 55: 75-83.
10 郑钰馨, 奚鹰, 李梦如, 等.旋转向量减速器纯扭转模型固有频率和灵敏度分析[J].吉林大学学报:工学),2019,49(2): 499-512.
Zheng Yu-xin, Xi Ying, Li Meng-ru, et al. Natural frequency and sensitivity analysis of a pure torsion model of a rotating vector reducer[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(2): 499-512.
11 袁晨恒, 邓兆祥, 姜艳军, 等. 轿车传动系扭转振动模型分析与计算[J].重庆理工大学学报,2010(7):18-22.
Yuan Chen-heng, Deng Zhao-xiang, Jiang yan-jun, et al. Analysis and calculation of torsional vibration model of car transmission system[J]. Journal of Chongqing University of Technology, 2010(7):18-22.
12 史文库, 陈龙, 张贵辉, 等.多级刚度双质量飞轮扭转特性建模与试验验证[J].吉林大学学报:工学版,2020,50(1): 44-52.
Shi Wen-ku, Chen Long, Zhang Gui-hui, et al. Modeling and experimental verification of torsional characteristics of multi-stage stiffness dual mass flywheel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020,50(1): 44-52.
13 高普, 项昌乐, 刘辉. 基于实车传动系统动力学特性的变刚度扭转吸振器减振控制[J].兵工学报,2022,43(10): 2443-2450.
Gao Pu, Xiang Chang-le, Liu Hui. Variable stiffness torsional vibration absorber vibration reduction control based on the dynamic characteristics of real vehicle transmission systems[J]. Journal of Ordnance Engineering, 2022, 43 (10): 2443-2450.
14 康强, 吴昱东, 邓江华, 等. 扭转减振器应用于前置后驱汽车传动系统扭振研究[J].制造业自动化,2014(23): 92-94.
Kang Qiang, Wu Yu-dong, Deng Jiang-hua, et al. Research on torsional vibration of front and rear drive vehicle transmission systems using torsional dampers [J]. Manufacturing Automation, 2014(23): 92-94.
15 张准, 汪凤泉. 振动分析[M].南京:东南大学出版社, 2008.
16 何渝生, 魏克严, 洪宗林. 汽车振动学[M] .北京:人民交通出版社,2016.
17 王斌. 柴油机轴系扭转振动分析及其磁流变液扭振减振器设计[D].天津:天津大学机械工程学院,2013.
Wang Bin. Torsional vibration damper of diesel engine and its analysis [D]. Tianjin: School of Mechanical Engineering, Tianjin University, 2013.
18 张全逾, 鲍远通, 娄宗勇. 基于AMESim的传动系统扭振研究[J].制造业自动化,2014(2):99-102.
Zhang Quan-yu, Bao Yuan-tong, Lou Zong-yong.Research on torsional vibration of transmission system based on AMESim[J].Manufacturing Automation, 2014(2):99-102.
19 朱玉田, 苏健君, 刘钊, 等. 直列6缸发动机激振力分析与仿真[J].中国工程机械学报,2018(4):327-331.
Zhu Yu-tian, Su Jian-jun, Liu Zhao,et al. Analysis and simulation of excitation force of in-line 6-cylinder engine [J]. Journal of China Construction Machinery, 2018 (4): 327-331.
20 宋大凤, 高福旺, 王诗元. 基于虚拟样机模型行星混动系统受迫振动响应分析[J].吉林大学学报:工学版,2020,50(5): 1974-1982.
Song Da-feng, Gao Fu-wang, Wang Shi-yuan. Analysis of forced vibration response of planetary hybrid system based on virtual prototype model[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1974-1982.
21 吴昱东, 李人宪, 丁渭平. 基于局域共振声子带隙的扭转减振器设计方法[J].振动与冲击,2018,37(9): 180-184.
Wu Yu-dong, Li Ren-xian, Ding Wei-ping. Design method for torsional vibration dampers based on local resonance phonon bandgap[J]. Vibration and Shock, 2018, 37(9): 180-184.
[1] 汪少华,张启睿,施德华,殷春芳,李春. 双行星排式混合动力传动系统非线性振动响应特性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 890-901.
[2] 吴骁,史文库,郭年程,赵燕燕,陈志勇,李鑫鹏,孙卓,刘健. 基于Ease off的准双曲面齿轮多目标优化[J]. 吉林大学学报(工学版), 2024, 54(1): 76-85.
[3] 刘平义,李晓婷,高偌霖,李海涛,魏文军,王亚. 车辆侧倾驱动机构设计与试验[J]. 吉林大学学报(工学版), 2023, 53(8): 2185-2192.
[4] 汪少华,储堃,施德华,殷春芳,李春. 基于有限时间扩张状态观测的HEV鲁棒复合协调控制[J]. 吉林大学学报(工学版), 2023, 53(5): 1272-1281.
[5] 罗勇,隋毅,申付涛,孙强,邓云霄,韦永恒. 基于双离合变速器的插电式混动系统起步控制策略[J]. 吉林大学学报(工学版), 2022, 52(12): 2765-2777.
[6] 朱镇,王登峰,孙晓东,曾令新,蔡英凤,陈龙. 机液复合传动装置构型分析[J]. 吉林大学学报(工学版), 2022, 52(10): 2265-2277.
[7] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[8] 于亮, 李和言, 马彪, 李慧珠, 李明阳. 多片离合器轴向平均比压的衰减特性[J]. 吉林大学学报(工学版), 2018, 48(4): 990-997.
[9] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[10] 赵二辉, 马彪, 李和言, 杜秋, 吴健鹏, 马成男. 非均匀接触对湿式离合器摩擦特性的影响[J]. 吉林大学学报(工学版), 2018, 48(3): 661-669.
[11] 李明阳, 马彪, 李和言, 杜秋, 于亮, 陈飞. 径向热应力对离合器摩擦对偶钢片变形的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 83-88.
[12] 王磊, 刘钊, 刘洋. 基于人体反应谱分析的换挡舒适性评价[J]. 吉林大学学报(工学版), 2017, 47(3): 725-730.
[13] 宗长富, 任明辉, 万滢, 陈涛, 白鹰搏. 变速器斜齿轮宏观参数减振优化设计[J]. 吉林大学学报(工学版), 2016, 46(6): 1772-1779.
[14] 雷雨龙,刘科,付尧,孙少华,曾华兵. 基于理想换挡过程的换挡品质评价模型[J]. 吉林大学学报(工学版), 2015, 45(2): 358-363.
[15] 赵家昕,马彪,李和言,朱莉,韩明,朱礼安. 湿式离合器接合过程中的热弹性稳定性[J]. 吉林大学学报(工学版), 2015, 45(1): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!