吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1363-1373.doi: 10.13229/j.cnki.jdxbgxb.20230756

• 计算机科学与技术 • 上一篇    下一篇

基于渐进递归的生成对抗单幅图像去雨算法

刘广文1(),赵绮莹1,王超2,高连宇1,才华1(),付强3   

  1. 1.长春理工大学 电子信息工程学院,长春 130022
    2.长春理工大学 空间光电技术国家与地方联合工程研究中心,长春 130022
    3.长春理工大学 空间光电技术研究所,长春 130022
  • 收稿日期:2023-07-18 出版日期:2025-04-01 发布日期:2025-06-19
  • 通讯作者: 才华 E-mail:lgwen_2003@126.com;caihua@cust.edu.cn
  • 作者简介:刘广文(1971-),男,副教授,博士.研究方向:信号与信息处理技术.E-mail: lgwen_2003@126.com
  • 基金资助:
    国家自然科学基金重大项目(61890963);吉林省科技发展计划项目(20210204099YY)

Progressive recursive generative adversarial network-based single-image rain removal algorithm

Guang-wen LIU1(),Qi-ying ZHAO1,Chao WANG2,Lian-yu Gao1,Hua CAI1(),Qiang FU3   

  1. 1.School of Electronic Information Engineer,Changchun University of Science and Technology,Changchun 130022,China
    2.National and Local Joint Engineering Research Center for Space Optoelectronics Technology,Changchun University of Science and Technology,Changchun 130022,China
    3.School of Opto-Electronic Engineer,Changchun University of Science and Technology,Changchun 130022,China
  • Received:2023-07-18 Online:2025-04-01 Published:2025-06-19
  • Contact: Hua CAI E-mail:lgwen_2003@126.com;caihua@cust.edu.cn

摘要:

为了解决传统生成对抗网络(GAN)在去雨问题中因网络容量不均衡而表现不佳的问题,提出了一种基于渐进递归的生成对抗单幅图像去雨算法。该方法采用了渐进递归模块生成器和多尺度特征模块鉴别器,旨在提高生成器效率并增强鉴别能力。渐进递归模块通过融合多尺度特征并构建渐进递归结构,不仅减轻了网络参数的负担,也提高了生成器的效率。与此同时,多尺度特征模块有助于鉴别器从局部和全局两个层面提取特征,从而增强了其鉴别能力。实验结果表明:相较于现有算法,本文算法在Rain100L数据集上峰值信噪比(PSNR)和结构相似性(SSIM)指标提高了1.11%和1.16%;在Rain100H数据集上将指标分别提高了3.28%和1.01%;在真实数据集上,本文算法在去雨任务中表现出色,成功地保留了大部分细节特征。这些实验结果充分验证了本文算法的有效性和鲁棒性。

关键词: 计算机视觉, 图像去雨, 多尺度, 生成对抗网络, 渐进递归

Abstract:

To address the issue of traditional GAN networks underperforming in single-image rain removal due to imbalanced network capacity, this article introduces a progressive recursive generative adversarial algorithm for this task. This method employs a progressive recursive module generator and a multi-scale feature module discriminator, aiming to enhance the efficiency of the generator and bolster the discriminator's capability. The progressive recursive module, by merging multi-scale features and constructing a progressive recursive structure, not only reduces the burden of network parameters but also elevates the generator's efficiency. Concurrently, the multi-scale feature module aids the discriminator in extracting features at both local and global levels, thereby amplifying its discriminative power. Experimental results indicate that, compared to existing algorithms, our method achieves a peak signal-to-noise ratio (PSNR) and a structural similarity index measure (SSIM) were improved by 1.11% and 1.16% on the Rain100L dataset. On the Rain100H dataset, these metrics were improved by 3.28% and 1.01%, respectively. On real-world datasets, our algorithm excels in rain removal, successfully preserving the majority of detailed features. These experimental outcomes thoroughly verify the effectiveness and robustness of our proposed algorithm.

Key words: computer version, image rain removal, multi-scale, generative adversarial networks, progressive recursive

中图分类号: 

  • TP391

图1

本文算法总体框图"

图2

生成器网络结构图"

图3

多尺度卷积模块结构图"

图4

多尺度特征鉴别器结构"

表1

在Rain100L、Rain100H和Rain400数据集上的结果"

数据集Rain100LRain100HRain400
PSNRSSIMPSNRSSIMPSNRSSIM
DID-MDN1726.840.86025.000.75425.010.728
DDN1532.380.92624.950.78125.050.721
DerainCycleGAN1331.490.93626.820.84829.240.852
RESCAN1834.990.93126.450.84627.140.841
JORDER1635.110.95122.150.67427.780.867
MSPFN2034.400.94327.620.86029.180.896
ID-CGAN1132.440.95024.160.74729.870.898
PRENET1934.790.94528.060.88829.920.902
JRGR2332.800.93827.400.86731.880.938
MOEDN2434.390.94528.000.87630.120.919
本文35.500.96228.980.89732.320.946

图5

不同算法对合成图像的去雨结果比较"

图6

在真实数据集上的去雨性能比较"

表2

在真实数据集上不同算法的NIQE比较结果"

算法

DID-MDN17

RESCAN18

PRENET19

MSPFN20

本文

NIQE

4.393 9

4.573 5

4.654 7

4.452 8

4.049 2

表3

在大小为512×512的图像上不同方法的平均运行时间"

算法MSPFN20JORDER16RESCAN18DID-MDN17本文

平均

时间/s

0.311.460.520.200.176 3

表4

设置不同N值时本文方法的峰值信噪比和结构相似度"

评估指标N=2N=3N=4N=5
PSNR35.0235.2835.5035.11
SSIM0.9410.9580.9620.961

表5

损失函数参数设置对比"

参数PSNRSSIM
α=110β=135.190.935
α=100β=1035.500.962
α=60β=5034.920.949
α=10β=10034.680.947

表6

添加渐进递归模块与多尺度特征模块的添加渐进递归模块与多尺度特征模块的"

模块PSNRSSIM
渐进递归模块33.190.902
多尺度特征模块34.740.918
渐进递归模块+多尺度特征模块35.500.962
[1] 陈舒曼, 陈玮, 尹钟. 单幅图像去雨算法研究现状及展望 [J]. 计算机应用研究, 2022, 39 (1): 9-17.
Chen shu-man, Chen wei, Yin Zhong. Research status and prospect of single image ram removal algorithm[J]. Application Research of Computers, 2022, 39(1): 9-17.
[2] Sun P, Zhang R, Jiang Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Nashville, USA, 2021: 14454-14463.
[3] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C] ∥Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, 2020: 213-229.
[4] Fu Z, Fu Z, Liu Q, et al. SparseTT: visual tracking with sparse transformers[J/OL].[2023-07-05]..
[5] Song Z, Yu J, Chen Y P P, et al. Transformer tracking with cyclic shifting window attention[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 8791-8800.
[6] Yan W, Tan R T, Yang W, et al. Self-aligned video deraining with transmission-depth consistency[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11966-11976.
[7] Yue Z, Xie J, Zhao Q, et al. Semi-supervised video deraining with dynamical rain generator[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 642-652.
[8] Li Y, Tan R T, Guo X, et al. Rain streak removal using layer priors[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2736-2744.
[9] Kim J H, Sim J Y, Kim C S. Video deraining and desnowing using temporal correlation and low-rank matrix completion[J]. IEEE Transactions on Image Processing, 2015, 24(9): 2658-2670.
[10] Jiang T X, Huang T Z, Zhao X L, et al. A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu, USA, 2017: 4057-4066.
[11] Zhang H, Sindagi V, Patel V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(11): 3943-3956.
[12] Qian R, Tan R T, Yang W, et al. Attentive generative adversarial network for raindrop removal from a single image[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2482-2491.
[13] Wei Y, Zhang Z, Wang Y, et al. Deraincyclegan: rain attentive cyclegan for single image deraining and rainmaking[J]. IEEE Transactions on Image Processing, 2021, 30: 4788-4801.
[14] Metz L, Poole B, Pfau D, et al.Unrolled generative adversarial networks[J/OL].[2023-07-05]..
[15] Fu X, Huang J, Zeng D, et al. Removing rain from single images via a deep detail network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3855-3863.
[16] Yang W, Tan R T, Feng J, et al. Deep joint rain detection and removal from a single image[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA,2017: 1357-1366.
[17] Zhang H, Patel V M. Density-aware single image de-raining using a multi-stream dense network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City, USA, 2018: 695-704.
[18] Li X, Wu J, Lin Z, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]∥Proceedings of the European Conference on Computer Vision (ECCV),Munich, Germany, 2018: 254-269.
[19] Ren D, Zuo W, Hu Q, et al. Progressive image deraining networks: a better and simpler baseline[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 3937-3946.
[20] Jiang K, Wang Z, Yi P, et al. Multi-scale progressive fusion network for single image deraining[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA,2020: 8346-8355.
[21] Kupyn O, Budzan V, Mykhailych M, et al. Deblurgan: blind motion deblurring using conditional adversarial networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Salt Lake City, USA, 2018: 8183-8192.
[22] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation with conditional adversarial networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu, USA, 2017: 1125-1134.
[23] Ye Y, Chang Y, Zhou H, et al. Closing the loop: joint rain generation and removal via disentangled image translation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 2053-2062.
[24] Huang H, Yu A, He R. Memory oriented transfer learning for semi-supervised image deraining[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern recognition,Nashville, USA, 2021: 7732-7741.
[1] 潘义勇,徐家聪,尤逸文,全勇俊. 网约车出行需求影响因素多尺度空间异质性分析[J]. 吉林大学学报(工学版), 2025, 55(5): 1567-1575.
[2] 侯越,郭劲松,林伟,张迪,武月,张鑫. 分割可跨越车道分界线的多视角视频车速提取方法[J]. 吉林大学学报(工学版), 2025, 55(5): 1692-1704.
[3] 才华,王玉瑶,付强,马智勇,王伟刚,张晨洁. 基于注意力机制和特征融合的语义分割网络[J]. 吉林大学学报(工学版), 2025, 55(4): 1384-1395.
[4] 刘广文,谢欣月,付强,才华,王伟刚,马智勇. 基于时空模板焦点注意的Transformer目标跟踪算法[J]. 吉林大学学报(工学版), 2025, 55(3): 1037-1049.
[5] 李学军,权林霏,刘冬梅,于树友. 基于Faster-RCNN改进的交通标志检测算法[J]. 吉林大学学报(工学版), 2025, 55(3): 938-946.
[6] 程德强,刘规,寇旗旗,张剑英,江鹤. 基于自适应大核注意力的轻量级图像超分辨率网络[J]. 吉林大学学报(工学版), 2025, 55(3): 1015-1027.
[7] 季渊,虞雅淇. 基于密集卷积生成对抗网络与关键帧的说话人脸视频生成优化算法[J]. 吉林大学学报(工学版), 2025, 55(3): 986-992.
[8] 才华,郑延阳,付强,王晟宇,王伟刚,马智勇. 基于多尺度候选融合与优化的三维目标检测算法[J]. 吉林大学学报(工学版), 2025, 55(2): 709-721.
[9] 张曦,库少平. 基于生成对抗网络的人脸超分辨率重建方法[J]. 吉林大学学报(工学版), 2025, 55(1): 333-338.
[10] 王宏志,宋明轩,程超,解东旋. 基于改进YOLOv5算法的道路目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2658-2667.
[11] 朱圣杰,王宣,徐芳,彭佳琦,王远超. 机载广域遥感图像的尺度归一化目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2329-2337.
[12] 赖丹晖,罗伟峰,袁旭东,邱子良. 复杂环境下多模态手势关键点特征提取算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2288-2294.
[13] 才华,寇婷婷,杨依宁,马智勇,王伟刚,孙俊喜. 基于轨迹优化的三维车辆多目标跟踪[J]. 吉林大学学报(工学版), 2024, 54(8): 2338-2347.
[14] 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222.
[15] 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .