吉林大学学报(工学版)

• • 上一篇    下一篇

基于核映射的无相关鉴别矢量集算法

张春雨,陈贺新,陈绵书   

  1. 吉林大学 通信工程学院, 长春 130022
  • 收稿日期:2005-12-16 修回日期:2006-02-01 出版日期:2006-07-01 发布日期:2006-07-01
  • 通讯作者: 陈贺新

Kernel mapping based algorithm for uncorrelated discriminant vectors set

Zhang Chun-yu, Chen He-xin, Chen Mian-shu   

  1. College of Communication Engineering, Jilin University, Changchun 130022,China
  • Received:2005-12-16 Revised:2006-02-01 Online:2006-07-01 Published:2006-07-01
  • Contact: Chen He-xin

摘要: 针对人脸识别这一非线性分类问题,提出了一种基于核的无相关鉴别矢量集算法。应用了支持向量机中核函数的思想,通过核映射将原空间的非线性分类问题转化为特征空间的线性分类问题,然后在特征空间进行无相关鉴别矢量集的求取。其优势在于:利用核函数不但可以将非线性问题转化为线性问题,而且可以提取样本图像的高阶统计特征。在ORL人脸库中的测试结果表明,与传统的全局正交鉴别矢量集算法及传统的无相关鉴别矢量集算法相比,基于核映射的无相关鉴别矢量集算法有更高的识别率,最高识别率可达到99%。

关键词: 信息处理技术, 人脸识别, Fisher无相关鉴别矢量集, 核映射

Abstract: An algorithm for the uncorrelated discriminant vectors set based on the kernel mapping was proposed to solve the nonlinear classification problem of the face recognition. Applying the concept of the kernel function in the supporting vector machine, the nonlinear classification problem in the original space was transformed to the linear classification problem in the feature space by the kernel mapping, and the uncorrelated discriminant vectors set was solved in the feature space. The advantage of the algorithm consists in that the nonlinear problem can be transformed to the linear one, and the high order statistical features among the pixels of the face image can be extracted at the same time. The experiments in the ORL face database showed that the proposed algorithm is characterized by a higher recognition rate than the traditional algorithms for the global orthogonal and the uncorrelated discriminant vectors sets, and the highest recognition rate may reach 99%.

Key words: information processing, face recognition, Fisher uncorrelated set of discriminant vectors, kernel mapping

中图分类号: 

  • TN911.73
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!