吉林大学学报(工学版)

• • 上一篇    下一篇

提取混沌中谐波信号的时频方法

王国光1;王树勋1;何丽桥2   

  1. 1. 吉林大学 通信工程学院, 长春 130022; 2. 吉林大学 物理学院, 长春 130022
  • 收稿日期:2005-11-08 修回日期:2006-01-10 出版日期:2006-11-01 发布日期:2006-11-01
  • 通讯作者: 王树勋

Timefrequency method for harmonic signals extraction in chaos

Wang Guo-guang1;Wang Shu-xun1;He Li-qiao2
  

  1. 1.College of Communication Engineering, Jilin University,Changchun 130022,China; 2.College of Physics, Jilin University,Changchun 130022,China
  • Received:2005-11-08 Revised:2006-01-10 Online:2006-11-01 Published:2006-11-01
  • Contact: Wang Shu-xun

摘要:

首先采用谐波小波变换将观测信号分解成窄带信号,然后使用经验模态分解方法将每一个窄带信号分解为有限个内禀模态函数(IMFs),根据功率谱密度选取内禀模态函数,提取谐波信号。该方法的性能可由噪声缩减因子和相关系数两个指标度量。理论分析和仿真实验表明,在信噪比不太低的情况下,该方法对提取淹没在混沌和噪声背景下的谐波信号非常有效。

关键词: 信息处理技术, 信号提取, 经验模态分解, 谐波小波, 混沌

Abstract:

A combination method of empirical mode decomposition (EMD) and harmonic wavelet transformation were used for harmonic signals extraction in chaos.Harmonic wavelet transformation to decompose the observed signal into several narrow band signals was conducted first. Then each narrow band signal was decomposed into a number of intrinsic mode function components (IMFs) which was selected according to power spectrum dense, and the harmonic signal was extracted. Performance of the method was evaluated by both a noise reduction factor and correlation between the extracted signal and the original noisefree signal. Theoretical analysis and computer simulation show that this method is effective in extracting harmonic signals provided that signal to noise ratio is not very low.

Key words: information processing, signals extraction, EMD, harmonic wavelet, chaos

中图分类号: 

  • TP912.34
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!