Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (11): 3274-3280.doi: 10.13229/j.cnki.jdxbgxb.20220893

Previous Articles     Next Articles

Fault diagnosis method of point machine based on adaptive neural fuzzy inference network system

Yong-gang CHEN1(),Ji-ye XU1,Hai-yong WANG2,Wen-xiang XIONG3   

  1. 1.School of Automation and Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2.School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    3.China Railway First Survey And Design Institute Group Co. ,Ltd. ,Xi'an 710043,China
  • Received:2022-07-13 Online:2023-11-01 Published:2023-12-06

Abstract:

The number of railway signal switch machines is large, the working environment is bad, and many factors lead to the high frequency of equipment failure. In order to realize the accurate fault diagnosis of railway switch machine, a fault diagnosis method of switch machine based on dynamic weight particle swarm optimization and adaptive neural fuzzy network is proposed by analyzing the vibration signals generated during the switch machine operation. Firstly, the set empirical mode decomposition algorithm was used to decompose the vibration signals into several intrinsic mode functions and screen them. Then, the improved time-domain multi-scale spread entropy algorithm was used to extract the eigenentropy of IMFs, and then input the optimized ANFIS model to learn the fault diagnosis. Finally, it is compared with a variety of diagnostic model algorithms and learning algorithms. The experimental results show that the proposed method can effectively diagnose the fault of the switch machine, and has certain reference significance for the intelligent fault diagnosis of the switch machine and related research in the future.

Key words: switch machine, fault diagnosis, dynamic particle swarm optimization, adaptive neural fuzzy inference network system

CLC Number: 

  • TP391.5

Fig.1

System structure diagram of ANFIS"

Table 1

Data description of eight working conditions"

编号工况描述数量时长/s
1正常工作状态806.5~7.3
2转换力过小846.6~7.2
3转换力过大1级836.5~7.5
4转换力过大2级796.3~7.1
5固定部件松动876.5~7.5
6空载966.8~7.7
7卡异物907.2~8.2
8卡缺口865.8~6.3

Fig.2

Time domain waveform of vibration signal"

Fig.3

IMFs correlation coefficient"

Fig.4

IMFs kurtosis"

Fig.5

IMDE entropy graph"

Fig.6

IMDE entropy curves for working conditions 3, 4 and 7"

Fig.7

ITMDE entro1py curves for working conditions 3, 4 and 7"

Table 2

Evaluation of diagnostic results of different models"

模型R2eRMSE
BP0.7910.3257
k-NN0.8820.1632
ANFIS0.9570.0814

Table 3

Diagnostic classification results of different optimization methods"

学习算法迭代次数迭代时长/seRMSE
GA7413.60.2382
Grid17331.80.1643
PSO13224.50.1138
DPSO10218.30.0814

Table 4

Diagnostic results of different data preprocessing methods"

预处理方法特征提取算法eRMSE
EMDIMDE0.2211
EMDITMDE-
EEMDIMDE0.0526
EEMDITMDE0.0312
1 王瑞峰, 陈旺斌. 基于灰色神经网络的S700K转辙机故障诊断方法研究[J]. 铁道学报, 2016, 38(6): 68-72.
Wang Rui-feng, Chen Wang-bin. Research on fault diagnosis method for S700K switch machine based on grey neural network[J]. Journal of the China Railway Society, 2016,38(6): 68-72.
2 孔令刚, 焦相萌, 陈光武, 等. 基于Mallat小波分解与改进GWO-SVM的转辙机故障诊断[J]. 铁道科学与工程学报, 2020, 17(5): 1070-1079.
Kong Ling-gang, Jiao Xiang-meng, Chen Guang-wu, et al. Turnout fault diagnosis based on Mallat wavelet decomposition and improved GWO-SVM[J]. Journal of Railway Science and Engineering, 2020, 17(5): 1070-1079.
3 孙迪钢. 基于深度学习的轨道转辙机故障检测系统[D]. 广州: 华南理工大学计算机科学与工程学院, 2018.
Sun Di-gang. Fault detection system of track switch machine based on deep learning[D]. Guangzhou: School of Computer Science and Engineering, South China University of Technology, 2018.
4 Shao K, Fu W, Tan J, et al. Coordinated approach fusing time-shift multiscale dispersion entropy and vibrational Harris hawks optimization-based SVM for fault diagnosis of rolling bearing[J]. Measurement, 2021, 173(3): 108580.
5 王伯昕, 杨海涛, 王清, 等. 基于补充改进集合经验模态分析法-多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报: 工学版, 2020, 50(1): 216-226.
Wang Bo-xin, Yang Hai-tao, Wang Qing, et al. Optimization filtering method for bridge vibration signal analysis based on complementary and improved ensemble empirical mode analysis and multi-scale permutation entropy[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 216-226.
6 王宏志, 王婷婷, 兰淼淼, 等. 基于位置跟踪的机械臂多电机新型滑模控制策略[J/OL]. [2023-09-10]. DOI: 10.13229/j.cnki.jdxbgxb.20220742 .
doi: 10.13229/j.cnki.jdxbgxb.20220742
7 李彦瑾, 罗霞. 基于模糊神经网络的混合交通流路阻测算模型[J]. 吉林大学学报: 工学版, 2019, 49(1): 53-59.
Li Yan-jin, Luo Xia. Calculation model of mixed traffic flow resistance based on fuzzy neural network [J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 53-59.
8 张炎亮, 颜健勇. 基于G-DPSO算法的决策树轴承故障诊断方法[J]. 工业工程, 2021, 24(6): 41-47.
Zhang Yan-liang, Yan Jian-yong. Decision tree bearing fault diagnosis method based on G-DPSO algorithm[J]. Industrial Engineering, 2021, 24(6): 41-47.
9 王志坚, 常雪, 王俊元, 等. 排列熵优化改进变模态分解算法诊断齿轮箱故障[J]. 农业工程学报, 2018, 34(23): 59-66.
Wang Zhi-jian, Chang Xue, Wang Jun-yuan, et al. Gearbox fault diagnosis based on permutation entropy optimized variational mode decomposition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23): 59-66.
10 周怡娜, 董宏丽, 张勇, 等. 基于VMD去噪和散布熵的管道信号特征提取方法[J]. 吉林大学学报: 工学版, 2022, 52(4): 959-969.
Zhou Yi-na, Dong Hong-li, Zhang Yong, et al. Pipeline signal feature extraction method based on VMD denoising and spread entropy[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(4): 959-969.
[1] Dan-tong OUYANG,Rui SUN,Xin-liang TIAN,Li-ming ZHANG,Ping-ping LIU. Approach for generating minimal fault detectability and isolability set in dynamic system based on partial maximum satisfiability problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1163-1173.
[2] Dan-tong OU-YANG,Rui SUN,Xin-liang TIAN,Bo-han GAO. Set blocking⁃based approach to sensor selection in uncertain systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 547-554.
[3] Chao-gang ZHANG,Zhong-lou SHI,Min LI. Simulation of ultra-precision machine tool spindle fault diagnosis based on multi-state time series predictive learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3056-3061.
[4] Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328.
[5] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[6] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[7] Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496.
[8] Fei-yue DENG, LYUHao-yang,Xiao-hui GU,Ru-jiang HAO. Fault diagnosis of high⁃speed train axle bearing based on a lightweight neural network Shuffle⁃SENet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 474-482.
[9] Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376.
[10] Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[11] Xian-jun DU,Liang-liang JIA. Fault diagnosis of rolling bearing based on optimized stacked denoising auto encoders [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2827-2838.
[12] Fei CHEN,Zheng YANG,Zhi-cheng ZHANG,Wei LUO. Fault diagnosis method of rotating machinery for unlabeled data [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2514-2522.
[13] Jie CAO,Zhi-Dong HE,Ping YU,Jin-hua WANG. Bearing fault diagnosis method under unbalanced data distribution [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2523-2531.
[14] Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153.
[15] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .