Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1443-1458.doi: 10.13229/j.cnki.jdxbgxb.20220742

Previous Articles    

A novel sliding mode control strategy of multi-motor for robot arm based on position tracking

Hong-zhi WANG(),Ting-ting WANG(),Miao-miao LAN,Shuo XU   

  1. School of Computer Science and Engineering,Changchun University of Technology,Changchun 130012,China
  • Received:2022-06-14 Online:2024-05-01 Published:2024-06-11
  • Contact: Ting-ting WANG E-mail:wanghongzhi@ccut.edu.cn;wangtingting@ccut.edu.cn

Abstract:

When the multi-motors driven robotic arm system operates in a complex environment, its joint position is easily disturbed by external interference such as load, resulting in large tracking error and synchronization error, which causes system performance degradation. To solve this problem, a new multi-motors ring coupling control (NRCC) strategy is proposed. The synchronous proportional coefficient is set in NRCC to ensure the coordinated operation of multiple motors. The active disturbance rejection compensation controller (ADRCC) and the adjacent mean error processor are designed. The ADRCC compensates the position control signal of the motor twice through the adjacent mean error signal, which reduces the synchronization error between multi-motors. Meanwhile, a novel adaptive neuro-fuzzy inference system (ANFIS) optimizes exponential reaching rate sliding mode tracking controller (ANFIS-SMC) and disturbance observer are proposed to ensure the position tracking performance of motors. The simulation results show that the proposed control strategy effectively reduces the synchronization error between multiple motors and ensures the high-precision tracking performance of the motors.

Key words: control theory and control engineering, robotic arm, multi-motors, ring coupling control, adaptive neuro-fuzzy inference system, sliding mode tracking controller

CLC Number: 

  • TP273

Fig.1

Block diagram of the control system of the i th joint motor"

Fig.2

Multi-motor synchronous control system based on position tracking"

Fig. 3

Network structure diagram of ANFIS"

Fig.4

Structure diagram of active disturbance rejection compensation controller"

Fig.5

ANFIS membership functions of the input variables"

Fig.6

ANFIS model training"

Table 1

Main parameters of multi-motor synchronization control strategy"

策略参数名称数值
SMC+TRCC滑模跟踪控制器ε=2?000k=1?600c=0.1
ANFIS-SMC+NRCC滑模跟踪控制器ε0=19?000μ=0.03k=10?000δ=0.1c=0.1
扰动观测器增益L=10?000
自抗扰补偿控制器γ=300β01=10?000β02=5?000b0=1?400τ0=30

Fig.7

Position tracking response curve of single motor under different values of disturbance observer gain parameter L"

Fig.8

Position tracking response curve of multi-motor under different values of ADRCC parameterτ"

Table 2

Motor Parameters"

参数
定子电阻 R2.875
电感 (Ld/Lq)/H0.008 5
磁链 ψ/V-s0.175
转动惯量 J/(kg?m20.000 8
摩擦系数 B/((N?m?s)/rad)0.001
极对数 P4
逆变器增益Kw500
逆变器时间常数Tw/s5×10-6

Fig.9

Position tracking response curve of multi-motor system with or without active disturbance rejection compensation controller"

Fig.10

Fully synchronous response curves of ANFIS-SMC+NRCC position tracking under step input condition"

Fig.11

Fully synchronous response curves of SMC+TRCC position tracking under step input condition"

Fig.12

Proportional synchronous response curves of ANFIS-SMC+NRCC position tracking under step input condition"

Fig.13

Proportional synchronous response curves of SMC+TRCC position tracking under step input condition"

Fig.14

Fully synchronous response curves of ANFIS-SMC+NRCC position tracking under sinusoidal input condition"

Fig.15

Fully synchronous response curves of SMC+TRCC position tracking under sinusoidal input condition"

Fig.16

Proportional synchronous response curves of ANFIS-SMC+NRCC position tracking under sinusoidal input condition"

Fig.17

Proportional synchronous response curves of SMC+TRCC position tracking under sinusoidal input condition"

1 Aljalal M, Ibrahim S, Djemal R, et al. Comprehensive review on brain-controlled mobile robots and robotic arms based on electroencephalography signals[J]. Intelligent Service Robotics, 2020, 13(4): 539-563.
2 Grushko S, Vysock A, Oádal P, et al. Improved mutual understanding for human-robot collaboration: combining human-aware motion planning with haptic feedback devices for communicating panned trajectory[J]. Sensors, 2021, 21(11): No.21113673.
3 刘克平, 秦悦, 杨宏韬, 等. 多轴工业机器人非线性环形耦合补偿同步控制[J]. 机械科学与技术, 2018, 37(6): 910-914.
Liu Ke-ping, Qin Yue, Yang Hong-tao, et al. Nonlinear ring coupling compensation synchronization control for multi-axis industrial robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 910-914.
4 Cordeiro A, Manuel J, Pires V F. Performance of synchronized master-slave closed-loop control of AC electric drives using real time motion over ethernet (RTMoE)[J]. Mechatronics, 2020, 69(4): No.102400.
5 杨小庆, 赵振华. 多电机机器人模糊PID控制仿真研究[J]. 中国工程机械学报, 2020, 18(3): 248-252.
Yang Xiao-qing, Zhao Zhen-hua. Simulation of fuzzy-PID control for multi-motor robot[J]. Chinese Journal of Construction Machinery, 2020, 18(3): 248-252.
6 Li Z, Zhang Q, An J, et al. Cross-coupling control method of the two-axis linear motor based on second-order terminal sliding mode[J]. Journal of Mechanical Science and Technology, 2022, 36(3): 1485-1495.
7 赵宏英, 曾彦, 廖丽. 基于改进交叉耦合的多永磁同步电机速度同步控制[J]. 机床与液压, 2021, 49(22): 44-51.
Zhao Hong-ying, Zeng Yan, Liao Li. Speed synchronous control of multiple permanent magnet synchronous motors based on an improved cross-coupling structure[J]. Machine Tool & Hydraulics, 2021, 49(22): 44-51.
8 Deng Z, Shang J, Nian X. Synchronization controller design of two coupling permanent magnet synchronous motors system with nonlinear constraints[J]. ISA Transac Tions, 2015, 59: 243-255.
9 Sun D, Mills J K. Adaptive synchronized control for coordination of multirobot assembly tasks[J]. IEEE Transactions on Robotics and Automation, 2002, 18(4): 498-510.
10 刘玉强, 徐为民, 张梦杰, 等. 关于多电机位置同步优化控制仿真研究[J]. 计算机仿真, 2016, 33(11): 369-374.
Liu Yu-qiang, Xu Wei-ming, Zhang Meng-jie, et al. Simulation research on optimal control of multi motor position synchronization[J]. Computer Simulation, 2016, 33(11): 369-374.
11 Perez-Pinal F J, Calderon G, Araujo-Vargas I. Relative coupling strategy[C]∥IEEE International Electric Machines and Drives Conference, Madison, USA, 2003: 1162-1166.
12 Zhang C, Xiao M, He J. Multimotor improved relative coupling cooperative control based on sliding-mode controller[J]. Mathematical Problems in Engineering, 2020, 2020(23): 1-10.
13 Shi T, Hao L, Qiang G, et al. An improved relative coupling control structure for multi-motor speed synchronous driving system[J]. IET Electric Power Applications, 2016, 10(6): 451-457.
14 Lorenz R D, Schmidt P B. Synchronized motion control for process automation[C]∥IEEE Conference Record of the Industry Applications Society Annual Meeting, San Diego, USA, 1989: 1693-1698.
15 Payette K. The virtual shaft control algorithm for synchronized motion control[C]∥IEEE Proceedings of the 1998 American Control Conference, Philadelphia, USA, 1998: 3008-3012.
16 Zhang C, Xiao M, He J, et al. Collaborative control of multimotor systems for fixed-time optimisation based on virtual main-axis speed compensation structure[J]. Complexity, 2021, 2021:1-15.
17 鲁文儒. 多关节机械臂同步控制策略研究[D]. 兰州: 兰州交通大学自动化与电气工程学院, 2021.
Lu Wen-ru. Research on synchronous control strategy of multi-joint manipulator[D]. Lanzhou: School of Automation and Electrical Engineering of Lanzhou Jiaotong University, 2021.
18 Liu R, Sun J Z, Luo Y Q, et al. Research on multi-motor synchronization control based on the ring coupling strategy for cutter head driving system of shield machines[J]. Applied Mechanics & Materials, 2011, 52: 65-72.
19 Wu Y, Cheng Y, Wang Y. Research on a multi-motor coordinated control strategy based on fuzzy ring network control[J]. IEEE Access, 2020, 8: 39375-39388.
20 Sun D. Position synchronization of multiple motion axes with adaptive coupling control[J]. Automatica, 2003, 39(6): 997-1005.
21 丁威, 杜钦君, 宋传明, 等. 均值耦合多电机滑模速度同步控制[J]. 西安交通大学学报, 2022, 56(2): 159-170.
Ding Wei, Du Qin-jun, Song Chuan-ming, et al. A synchronous control method for mean-coupled sliding mode speed of multi-motor [J]. Journal of Xi 'an Jiaotong University, 2022, 56(2): 159-170.
22 张润梅, 罗谷安, 袁彬, 等. 多关节机械臂干扰观测器的自适应滑模控制[J]. 机械科学与技术, 2021, 40(10): 1595-1602.
Zhang Run-mei, Luo Gu-an, Yuan Bin, et al. Adaptive sliding mode control of disturbance observer for multi joint manipulator[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(10): 1595-1602.
23 贺志浩, 于海生. 基于自抗扰与观测器的环形耦合多电机协调滑模控制[J]. 微电机, 2021, 54(4): 48-55.
He Zhi-hao, Yu Hai-sheng. Coordinated sliding mode control of ring-coupled multi-motor based on active disturbance rejection and observer[J]. Micromotors, 2021, 54(4): 48-55.
24 周挺, 徐宇工, 吴斌. 球形机器人的自适应分数阶PIλDμ滑模速度控制方法[J]. 吉林大学学报: 工学版, 2021, 51(2): 728-737.
Zhou Ting, Xu Yu-gong, Wu Bin. Adaptive fractional PIλDμ sliding mode control method for speed control of spherical robot[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 728-737.
25 Vanchinathan K, Selvaganesan N. Adaptive fractional order PID controller tuning for brushless DC motor using artificial bee colony algorithm[J]. Results in Control and Optimization, 2021, 4(4): No.100032.
26 吴伟, 曾庆军, 王阳, 等. 水下机器人多电机协同模糊滑模控制研究[J]. 中国测试, 2021, 47(11): 101-106.
Wu Wei, Zeng Qing-jun, Wang Yang, et al. Research on fuzzy sliding mode control of multi motor cooperative underwater robot[J]. China Measurement & Test, 2021, 47(11): 101-106.
[1] Jun ZHAO,Zi-liang ZHAO,Qing-lin ZHU,Bin GUO. Output⁃feedback robust control of uncertain systems without observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 828-835.
[2] Guo-yuan QI,Hao CHEN. Observer⁃based control⁃anti⁃disturbance⁃obstacle avoidance of quadrotor unmanned aerial vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 810-822.
[3] Long-long CHEN,Tian-yu FENG,Zong-yang LYU,Yu-hu WU. Finite⁃time sliding mode attitude control for coaxial tilt⁃rotor unmanned aerial vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 883-890.
[4] Guo-yuan QI,Kuo LI,Kun WANG. Attitude constrained control of quadrotor unmanned aerial vehicle based on compensation function observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 853-862.
[5] Hong-yan GUO,Wen-ya YU,Jun LIU,Qi-kun DAI. Integrated moving horizon decision⁃making method for lane and speed of intelligent vehicle in complex scenarios [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 693-703.
[6] De-jun WANG,Kai-ran ZHANG,Peng XU,Tian-biao GU,Wen-ya YU. Speed planning and control under complex road conditions based on vehicle executive capability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 643-652.
[7] Zhuo-jun XU,Yao-xiang WANG,Xing HUANG,Cheng PENG. Ground moving target search and location with multi⁃unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 832-840.
[8] De-feng HE,Dan ZHOU,Jie LUO. Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 726-734.
[9] Yan MA,Ze-xuan GUO. SoE estimation of lithium-ion batteries based on improved BPNN-MPF algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 263-272.
[10] Hong-zhi WANG,Ting-ting WANG,Huang-shui HU,Xiao-fan LU. PID control based on BP neural network optimized by Q⁃learning for speed control of BLDCM [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2280-2286.
[11] Jian-xin FENG,Qiang WANG,Ya-lei WANG,Biao XU. Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1990-1996.
[12] Yan MA,Jian-fei HUANG,Hai-yan ZHAO. Method of vehicle formation control based on vehicle to vehicle communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 711-718.
[13] DENG Li-fei, SHI Yao-wu, ZHU Lan-xiang, YU Ding-li. Failure detection of closed-loop systems and application to SI engines [J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!