Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1788-1795.doi: 10.13229/j.cnki.jdxbgxb.20220882

Previous Articles    

Nonlinear robust control design for multi unmanned aerial vehicles suspended payload transportation system

Bin XIAN(),Guang-yi WANG,Jia-ming CAI   

  1. School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China
  • Received:2022-07-12 Online:2024-06-01 Published:2024-07-23

Abstract:

Multi UAVs suspended payload transportation system is a new type of aerial transportation. In this paper, a new nonlinear robust control strategy is proposed for the position tracking and attitude control of the payload. To deal with the unknown external disturbances and strong system states coupling, the dynamic model of multi-UAV suspended payload transportation system is established via the Lagrange method. Then, a nonlinear robust control strategy based on robust-integral-signum-error method and geometric control is designed to compensate for the effects of unknown external disturbances, and accurate control of the payload's attitude and position are achieved. Based on the stability analysis of Lyapunov method, the stability of the closed-loop system and the asymptotic convergence of the suspended load tracking error are proved. The simulation results show that the control strategy proposed in this paper can achieve good trajectory tracking performance and has good robustness to unknown external interference.

Key words: control theory and control engineering, multiple unmanned aerial vehicles, suspended payload, geometric control, nonlinear control, robust control

CLC Number: 

  • TP273

Fig.1

Structure diagram of multi-UAV suspension system"

Table 1

Symbol definition"

符号单位所属群符号描述
pLmR3负载质心在惯性坐标系下的位置
vLm/sR3负载质心在惯性坐标系下的线速度
RLSO(3)负载在体坐标系下的姿态旋转矩阵
ΩLrad/sR3负载在惯性坐标系下的角速度
mLkgR负载质量
JLm4负载的惯性矩阵
pimR3i架无人机质心在惯性坐标系下的位置
vim/sR3i架无人机质心在惯性坐标系下的线速度
RiSO(3)i架无人机在体坐标系下的姿态旋转矩阵
Ωirad/sR3i架无人机质心在惯性坐标系下的角速度
muavkgR每架无人机的质量
Jim4i架无人机的惯性矩阵
ωirad/sR3i根绳索的角速度

Fig. 2

Three dimensional schematic diagram of multi machine suspension system"

Table 2

Parameters of MATLAB simulation"

增益名称数值增益名称数值
kpLdiag([9.5,11.9,9])βp5.0
kvLdiag([1.8,1.6,3.0])cx0.05
α2diag([3,2.5,0.01])α126.3
ktdiag([43.7,28.23,17.54])β0.01
kξdiag([50.1,50,50])kω50

Fig. 3

Simulation 1 position error of payload"

Fig. 4

Simulation 1 rotation matrix error of payload"

Fig. 5

Simulation 2 position error of payload"

Fig. 6

Simulation 2 rotation matrix error of payload"

Table 3

Simulation 1 comparison of maximum steady?state error of load posture"

稳态最大误差本文控制器滑模控制器
ex0.001 40.020 2
ey0.005 20.022 2
ez0.001 50.004 5
eRL(1)2.007?0×10-52.322?5×10-4
eRL(2)4.467?3×10-53.391?5×10-4
eRL(3)0.550 70.807 2

Table 4

Simulation 2 comparison of maximum steady?state error of load posture"

稳态最大误差本文控制器滑模控制器
ex0.188 50.294 8
ey0.195 40.279 8
ez0.176 10.313 8
eRL(1)0.014 40.050 1
eRL(2)0.014 40.043 9
eRL(3)0.572 70.815 3
1 Gao J, Zhang F, Huang P, et al. Observer-based second order sliding mode control for tethered quadrotor transportation[C]∥2021 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Xi'ning, China, 2021: 1335-1342.
2 Pizetta I H B, Brandão A S, Sarcinelli-Filho M. Cooperative load transportation using three quadrotors[C]∥2019 International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 2019: 644-650.
3 Mofid O, Mobayen S, Fekih A. Adaptive integral-type terminal sliding mode control for unmanned aerial vehicle under model uncertainties and external disturbances[J]. IEEE Access, 2021, 9: 53255-53265.
4 Xian B, Dawson D M, de Queiroz M S, et al. A continuous asymptotic tracking control strategy for uncertain nonlinear systems[J]. IEEE Transactions on Automatic Control, 2004, 49(7): 1206-1211.
5 Gu X, Xian B, Wang Y. Agile flight for a quadrotor via robust geometry control: theory and experimental verification[J]. International Journal of Robust and Nonlinear Control, 2022, 32(7): 4236-4250.
6 鲜斌, 李宏图. 分布式多无人机的时变编队非线性控制设计[J]. 控制与决策, 2021, 36(10): 2490-2496.
Xian Bin, Li Hong-tu. Time-varying formation nonlinear control of distributed multiple UAVs[J]. Control and Decision, 2021, 36(10): 2490-2496.
7 Xian B, Yang S. Robust tracking control of a quadrotor unmanned aerial vehicle-suspended payload system[J]. IEEE/ASME Transactions on Mechatronics, 2020, 26(5): 2653-2663.
8 鲜斌, 张诗婧, 韩晓薇, 等. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报: 工学版, 2021, 51(6): 2259-2267.
Xian Bin, Zhang Shi-jing, Han Xiao-wei, et al. Trajectory planning for the unmanned aerial vehicle (UAV) slung-payload aerial transportation system based on reinforcement learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2259-2267.
9 Shirani B, Najafi M, Izadi I. Cooperative load transportation using multiple UAVs[J]. Aerospace Science and Technology, 2019, 84: 158-169.
10 Li X, Zhang J, Han J. Trajectory planning of load transportation with multi-quadrotors based on reinforcement learning algorithm[J]. Aerospace Science and Technology, 2021, 116: No.106887.
11 梁潇, 王杨, 何慰, 等. 基于能量分析的欠驱动飞行吊运系统协同控制[J]. 控制理论与应用, 2020, 37(12): 2473-2481.
Liang Xiao, Wang Yang, He Wei, et al. Cooperative control for underactuated aerial transportation systems via the energy-based analysis[J]. Control Theory & Applications, 2020, 37(12): 2473-2481.
12 Sreenath K, Lee T, Kumar V. Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load[C]∥52nd IEEE Conference on Decision and Control, Firenze, Italy, 2013: 2269-2274.
13 Lee T. Geometric control of quadrotor UAVs transporting a cable-suspended rigid body[J]. IEEE Transactions on Control Systems Technology, 2017, 26(1): 255-264.
14 Sanalitro D, Savino H J, Tognon M, et al. Full-pose manipulation control of a cable-suspended load with multiple UAVs under uncertainties[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2185-2191.
15 Fernando T, Chandiramani J, Lee T, et al. Robust adaptive geometric tracking controls on SO (3) with an application to the attitude dynamics of a quadrotor UAV[C]∥2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 2011: 7380-7385.
[1] Hong-zhi WANG,Ting-ting WANG,Miao-miao LAN,Shuo XU. A novel sliding mode control strategy of multi-motor for robot arm based on position tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1443-1458.
[2] Jun ZHAO,Zi-liang ZHAO,Qing-lin ZHU,Bin GUO. Output⁃feedback robust control of uncertain systems without observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 828-835.
[3] Guo-yuan QI,Hao CHEN. Observer⁃based control⁃anti⁃disturbance⁃obstacle avoidance of quadrotor unmanned aerial vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 810-822.
[4] Long-long CHEN,Tian-yu FENG,Zong-yang LYU,Yu-hu WU. Finite⁃time sliding mode attitude control for coaxial tilt⁃rotor unmanned aerial vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 883-890.
[5] Guo-yuan QI,Kuo LI,Kun WANG. Attitude constrained control of quadrotor unmanned aerial vehicle based on compensation function observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 853-862.
[6] Hong-yan GUO,Wen-ya YU,Jun LIU,Qi-kun DAI. Integrated moving horizon decision⁃making method for lane and speed of intelligent vehicle in complex scenarios [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 693-703.
[7] De-jun WANG,Kai-ran ZHANG,Peng XU,Tian-biao GU,Wen-ya YU. Speed planning and control under complex road conditions based on vehicle executive capability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 643-652.
[8] Zhuo-jun XU,Yao-xiang WANG,Xing HUANG,Cheng PENG. Ground moving target search and location with multi⁃unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 832-840.
[9] De-feng HE,Dan ZHOU,Jie LUO. Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 726-734.
[10] Yan MA,Ze-xuan GUO. SoE estimation of lithium-ion batteries based on improved BPNN-MPF algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 263-272.
[11] Xiao-dong SUN,Yao ZHANG,Long CHEN. Deadbeat predictive voltage compensation control for permanent magnet synchronous hub motors of electric vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2213-2224.
[12] Jian-xin FENG,Qiang WANG,Ya-lei WANG,Biao XU. Fuzzy PID control of ultrasonic motor based on improved quantum genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1990-1996.
[13] Hong-zhi WANG,Ting-ting WANG,Huang-shui HU,Xiao-fan LU. PID control based on BP neural network optimized by Q⁃learning for speed control of BLDCM [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2280-2286.
[14] Yan MA,Jian-fei HUANG,Hai-yan ZHAO. Method of vehicle formation control based on vehicle to vehicle communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 711-718.
[15] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system [J]. 吉林大学学报(工学版), 2018, 48(2): 364-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!