Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3168-3174.doi: 10.13229/j.cnki.jdxbgxb.20221642

Previous Articles    

Fault diagnosis of complex system based on interpretive structural modeling

Ji-wei QIU1,2(),Hai-sheng LUO1(),Ya ZHANG1,Ding-guo XIAO2,Guan-jie ZHAO1,Mao-dong MA1   

  1. 1.Office of Quality Research,China Ordnance Industrial Standardization Research Institute,Beijing 100089,China
    2.College of Mechanical and Vehicle,Beijing Institute of Technology,Beijing 100081,China
  • Received:2022-12-29 Online:2024-11-01 Published:2025-04-24
  • Contact: Hai-sheng LUO E-mail:qiujiwei235@126.com;43365843@qq.com

Abstract:

In order to improve the fault management system of complex system, a fault diagnosis strategy based on interpretive structural modeling (ISM) is proposed. According to the fault mechanism analysis, the fault correlation matrix of system elements is established, and the interpretive structural model is applied to transform the complex system fault correlation relationship into an intuitive hierarchical model through matrix transformation, so as to realize the structure and hierarchical system fault propagation; The PageRank algorithm is introduced to evaluate the impact and influence of system element failures; The main cause of fault transmission is clarified through the magnitude of the impact related to component failure and the fault transmission logic, so as to provide a basis for fault diagnosis. Finally, a device is used as an example to verify the effectiveness of the method.

Key words: systems engineering, interpretive structural modeling, fault diagnosis, fault path

CLC Number: 

  • TB114.3

Fig.1

Schematic diagram of system fault diagnosis for ISM-PageRank"

Fig.2

Explanation of the construction process diagram of the structural model"

Fig.3

Directed graph of a certain type of machining center failure"

Fig.4

Structural model for fault transmission in machining centers"

Fig.5

Network diagram of multi-level hierarchical structure of system elements"

Table 1

The reason degree table"

系统代码中心度系统代码中心度
主轴系统S1.812 5电气系统V1.343 75
刀库M1.015 625气动系统G0.628 75
进给系统J1.956 875润滑系统L0.562 5
数控系统NC0.875冷却系统W0.5
液压系统D0.625排屑系统K0.25
1 张海瑞, 洪东跑, 赵宇, 等. 基于变动统计的复杂系统可靠性综合评估[J]. 系统工程与电子技术, 2015, 37(5): 1213-1218.
Zhang Hai-rui, Hong Dong-pao, Zhao Yu, et al. Synthetic reliability assessment for complex system based on dynamic population statistics[J]. Systems Engineering and Electronics, 2015,37(5): 1213-1218.
2 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9.
LI Han, Xiao De-yun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9.
3 周东华, 史建涛, 何潇. 动态系统间歇故障诊断技术综述[J]. 自动化学报, 2014, 40(2): 161-171.
Zhou Dong-hua, Shi Jian-tao, He Xiao. Review of intermittent fault diagnosis techniques for dynamic systems[J]. Acta Automatica Sinica, 2014, 40(2): 161-171.
4 Bhattacharyya S, Kumar R, Huang Z. A discrete event systems approach to network fault management: detection and diagnosis of faults[J]. Asian Journal of Control, 2011, 13(4): 471-479.
5 盛博, 邓超, 熊尧, 等. 基于图论的数控机床故障诊断方法[J]. 计算机集成制造系统, 2015, 21(6): 1559-1570.
Sheng Bo, Deng Chao, Xiong Yao, et al. Fault diagnosis for CNC machine tool based on graph theory[J]. Computer Integrated Manufacturing Systems, 2015, 21(6): 1559-1570.
6 Liu H M, Liu D W, Lu C, et al. Fault diagnosis of hydraulic servo system using the unscented kalman filter[J]. Asian Journal of Control, 2014, 16(6): 1713-1725.
7 韩光臣, 孙树栋, 司书宾. 基于图论的复杂系统建模技术研究[J]. 机械科学与技术, 2005, 24(9): 1118-1121.
Han Guang-chen, Sun Shu-dong, Si Shu-bin. Research on complex system modeling technology based on graph theory[J]. Mechanical Science and Technology, 2005, 24(9): 1118-1121.
8 刘鹏鹏, 左洪福, 苏艳, 等. 基于图论模型的故障诊断方法研究进展综述[J].中国机械工程, 2013, 24(5): 696-703.
Liu Peng-peng, Zuo Hong-fu, Su Yan, et al. Review of research on fault diagnosis based on graph theory[J]. China Mechanical Engineering, 2013, 24(5): 696-703.
9 Yokabed B, Mohammad J, Mahdi K, et al. The application of ISM model in evaluating agile suppliers selection criteria and ranking suppliers using fuzzy topsis-ahp methods[J]. Expert Systems with Applications, 2015, 42(15/16): 6224-6236.
10 王守相, 张一帆, 葛磊蛟. 新型城镇配电网影响因素解释结构模型[J]. 电力自动化设备, 2015, 35(11): 75-81.
Wang Shou-xiang, Zhang Yi-fan, Ge Lei-jiao. Interpretative structural model of influencing factors for distribution network of new-type town[J]. Electric Power Automation Equipment, 2015, 35(11): 75-81.
11 Sun S G, Shen G X, Zhang Y Z, et al. Failure analysis of machining center based on ISM and FMECA[J]. Journal of Hunan University (Natural Sciences), 2015, 42(8): 47-52.
12 杨科. 基于高阶统计的非线性故障诊断方法的研究[D]. 北京: 北京化工大学信息学院, 2014.
Yang Ke. Nonlinear fault diagnosis method based on high-order statistics[D]. Beijing: Faculty of Information, Beijing University of Chemical Technology, 2014.
13 Ou L, Chen Y, Zhang J, et al. Dematel-ISM-based study of the impact of safety factors on urban rail tunnel construction projects[J]. Computational Intelligence and Neuroscience, 2022, 2022: 1-12.
14 张英芝, 吴茂坤, 申桂香, 等. 基于DEMATEL/ISM的组合机床故障相关性分析[J]. 工业工程, 2014, 17(3): 92-96.
Zhang Ying-zhi, Wu Mao-kun, Shen Gui-xiang, et al. An analysis of failure correlation of assemble machine tool based on DEMATEL/ISM[J]. Industrial Engineering Journal, 2014, 17(3): 92-96.
15 刘金平, 王杰, 刘先锋, 等. 基于递归稀疏主成分分析的工业过程在线故障监测和诊断[J]. 控制与决策, 2020, 35(8): 2006-2012.
Liu Jin-ping, Wang Jie, Liu Xian-feng, et al. Online fault monitoring and diagnosis using recursive sparse principal component analysis[J]. Control and Decision, 2020, 35(8): 2006-2012.
16 朱大锐, 王睿, 程文姬, 等. 基于改进PageRank算法的输电网关键节点辨识方法研究[J]. 电力系统保护与控制, 2022, 50(5): 86-93.
Zhu Da-rui, Wang Rui, Cheng Wen-ji, et al. Critical transmission node identification method based on improved PageRank algorithm[J]. Power System Protection and Control, 2022, 50(5): 86-93.
17 范华. 多维网络中基于PageRank的节点中心性度量方法研究[D]. 沈阳: 辽宁大学信息科学与技术学院, 2020.
Fan Hua. Research on node centrality measurement based on PageRank in multi-dimensional networks[D]. Shenyang: School of Information Science and Technology, Liaoning University, 2020.
18 应毅, 黄慧, 刘定一. 基于PageRank的热点发现混合算法研究[J]. 计算机技术与发展, 2019, 29(9): 81-85.
Ying Yi, Huang Hui, Liu Ding-yi. Research on hotspot detection hybrid algorithm based on PageRank[J]. Computer Technology And Development, 2019, 29(9): 81-85.
19 Gleich D F. PageRank beyond the web[J]. SIAM Review, 2015, 57(3): 321-363.
20 Sungchan P, Wonseok L, Byeongseo C, et al. A survey on personalized PageRank computation algorithms[J]. IEEE Access, 2019, 7: 163049-163062.
21 Kohlschütter C, Chirita P, Nejdl W. Efficient parallel computation of PageRank[J]. Lecture Notes in Computer Science, 2006, 3936(1): 241-252.
22 Zhang Y Z, Mu L M, Shen, G X, et al. Fault diagnosis strategy of CNC machine tools based on cascading failure[J]. Journal of Intelligent Manufacturing, 2019, 30(5): 2193-2202.
[1] Na WANG,Yue-lei CUI,Yang LI,Zi-cong WANG. Rolling bearing fault diagnosis method via wavelet packet logarithmic-energy map [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 494-502.
[2] Ping YU,Kang ZHAO,Jie CAO. Rolling bearing fault diagnosis based on optimized A-BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2156-2166.
[3] Chang-jian WANG,Jiu-ming LIU,Jin-zhou ZHANG,Bin LI. Laser sequence pulse diagnosis method of planetary reducer fault based on high-speed photography technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1869-1875.
[4] Hao-zhe CAO,Jin-ben ZHOU,Li-hua LI. Repetitive gradient learning parameter estimation of quantized Wiener system [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3673-3680.
[5] Xi-jun ZHANG,Ji-yang SHANG,Guang-jie YU,Jun HAO. Bearing fault diagnosis based on attention for multi-scale convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3009-3017.
[6] Dan-tong OUYANG,Rui SUN,Xin-liang TIAN,Li-ming ZHANG,Ping-ping LIU. Approach for generating minimal fault detectability and isolability set in dynamic system based on partial maximum satisfiability problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1163-1173.
[7] Dan-tong OU-YANG,Rui SUN,Xin-liang TIAN,Bo-han GAO. Set blocking⁃based approach to sensor selection in uncertain systems [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 547-554.
[8] Sheng JIANG,Peng-lang WANG,Zhi-ji DENG,Yi-ming BIE. Image fusion algorithm for traffic accident rescue based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3472-3480.
[9] Yong-gang CHEN,Ji-ye XU,Hai-yong WANG,Wen-xiang XIONG. Fault diagnosis method of point machine based on adaptive neural fuzzy inference network system [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3274-3280.
[10] Chao-gang ZHANG,Zhong-lou SHI,Min LI. Simulation of ultra-precision machine tool spindle fault diagnosis based on multi-state time series predictive learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3056-3061.
[11] Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328.
[12] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[13] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[14] Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496.
[15] Fei-yue DENG, LYUHao-yang,Xiao-hui GU,Ru-jiang HAO. Fault diagnosis of high⁃speed train axle bearing based on a lightweight neural network Shuffle⁃SENet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 474-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!