Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2287-2293.doi: 10.13229/j.cnki.jdxbgxb20210312

Previous Articles    

Feature dimensionality reduction and random forest method in intelligent diagnosis of rolling bearings for urban rail trains

Zhen CAO1(),Lu-yao CUI2,Bin LEI1,Jing-yi WANG3,Shuang-sheng CAO2()   

  1. 1.School of Civil Engineering,Xi'an University of Architecture & Technology,Xi'an 710055,China
    2.Xi'an Rail Transit Group Co. ,Ltd. ,Xi'an 710016,China
    3.Casco Signal Ltd. ,Shanghai 200040,China
  • Received:2021-04-12 Online:2022-10-01 Published:2022-11-11
  • Contact: Shuang-sheng CAO E-mail:653102531@qq.com;css299@163.com

Abstract:

As for the fault diagnosis of rolling bearings for urban rail trains,an integrated intelligent diagnosis method was proposed based on principal component analysis (PCA) and random forest (RF). Firstly, original feature vectors of 21 dimensions were extracted from time domain and frequency domain. Principal component analysis was then utilized to conduct dimension reduction accounting for the correlations within features. Finally, the size-reduced features act as the inputs of the RF. Consequently, an integrated intelligent diagnostic model called PCA-RF model was established. Experimental results demonstrate that the PCA-RF model is superior to other methods such as support vector machines and RF with original feature vectors as inputs, in terms of efficiency and effectiveness. In addition, the proposed method can obtain satisfied identifications among complicated bearing fault patterns which involve not only various fault locations but fault severity levels. In short, the PCA-RF model had a certain value in the diagnosis of rolling bearing faults of urban rail vehicles.

Key words: vehicle engineering, principal component analysis, random forest, rolling bearing, intelligent diagnosis

CLC Number: 

  • U271

Fig.1

Intelligent diagnosis model of rolling bearing based on PCA-RF"

Fig.2

PCA?RF flow chart of rolling bearing intelligent diagnosis"

Fig.3

Rolling bearing fault diagnosis test bench"

Table 1

Description of experimental data"

轴承

状态

故障程度

故障尺寸

/(mm×mm)

样本数量/个训练集/个测试集/个类别
正常正常0300250501

内圈

故障

轻度0.5×0.3300250502
中度1.0×0.3300250503
重度2.0×0.3300250504

外圈

故障

轻度0.5×0.3300250505
中度1.0×0.3300250506
重度2.0×0.3300250507
滚动体故障轻度0.5×0.3300250508
中度1.0×0.3300250509
重度2.0×0.33002505010

Fig.4

PCA principal component analysis results"

Fig.5

Influence of number for trees on accuracy"

Table 2

Comparison of experimental results"

模型SVMPCA?SVMRFPCA?RF
故障类别正确率/%
174.687.798100
296.71009894.2
361.771.495.894
483.386.2100100
594.692.59692
69810088.9100
710010098100
8100100100100
910010081100
10100100100100
整体准确率/%89.293.295.298
耗时/s1.560.993.112.53

Fig.6

Intelligent diagnosis of rolling bearings based on PCA-RF"

1 刘建强, 赵治博, 章国平, 等. 地铁车辆转向架轴承故障诊断方法研究[J]. 铁道学报, 2015, 37(1):30-36.
Liu Jian-qiang, Zhao Zhi-bo, Zhang Guo-ping. Research on fault diagnosis method for bogie bearings of metro vehicle[J]. Journal of the China Railway Society, 2015, 37(1): 30-36.
2 姚德臣. 面向城轨列车走行安全的轴承在途故障诊断研究[D]. 北京: 北京交通大学轨道交通安全与控制国家重点实验室, 2015.
Yao De-chen. Research on the Fault Diagnosis Algorithm for the Bearing of Urban Rail Train Running Gear[D]. Beijing: State Key Laboratory of Rail Transit Safety and Control, Beijing Jiaotong University, 2015.
3 左万里, 武小悦. 电子设备智能故障诊断技术发展综述[J]. 系统工程与电子技术, 2003, 25 (12) :1572-1575.
Zuo Wan-li, Wu Xiao-yue. The summary of equipment technology development on intelligent fault diagnosis[J]. Systems Engineering and Electronics, 2003, 25(12): 1572-1575.
4 Cheng Wei-dong, Wang Tian-yang, Wang Jin-jiang, et al. Effects and its elimination method of envelope deformation on order analysis[J].Journal of Vibration Engineering, 2015, 28(3): 470-477.
5 丁锋, 何正嘉, 陈雪峰. 考虑损伤程度的设备运行可靠性研究[J]. 西安交通大学学报, 2010, 44(1): 36-40.
Ding Feng, He Zheng-jia, Chen Xue-feng. Operational reliability evaluation of machinery considering component damaged severity[J]. Journal of Xi'an Jiaotong University, 2010, 44(1): 36-40.
6 林伟炜, 朱金福, 徐丽, 等. 基于主成分分析的飞机租赁业务成长研究[J]. 华东交通大学学报, 2019, 36(2): 69-76, 91.
Lin Wei-wei, Zhu Jin-fu, Xu Li, et al. Study on aircraft leasing business growth level index based on principal component analysis[J]. Journal of East China Jiaotong University, 2019, 36(2): 69-76, 91.
7 王依宁, 解大, 王西田, 等. 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39(14): 4070-4081.
Wang Yi-ning, Xie Da, Wang Xi-tian, et al. Prediction of Interaction between grid and wind farms based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39(14): 4070-4081.
8 魏伟, 刘鹏. 基于字典原子优化的滑动轴承摩擦状态识别[J]. 电子测量与仪器学报, 2018, 32(5): 202-207.
Wei Wei, Liu Peng. Sliding bearing friction state recognition based on optimization of dictionary atoms[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(5): 202-207.
9 彭虹. 中国食用菌出口影响因素主成分分析与变化趋势预测[J]. 中国农机化学报, 2020, 41(10): 125-131.
Peng Hong. Study on export forecast of edible fungi in China based on principal component-grey prediction model[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10): 125-131.
10 傅军栋, 邹欢, 康水华. PSO-SVM算法在智能建筑环境监控系统中的应用[J]. 华东交通大学学报, 2016, 147(1): 121-127.
Fu Jun-dong, Zou Huan, Kang Shui-hua. Application of PSO-SVM algorithm in environmental monitoring system of intelligent building[J]. Journal of East China Jiaotong University, 2016, 147(1): 121-127.
11 谢丽蓉, 杨欢, 李进卫, 等. 基于GA-ENN特征选择和参数优化的双馈风电机组轴承故障诊断[J]. 太阳能学报, 2021, 42(1): 149-156.
Xie Li-rong, Yang Huan, Li Jin-Wei, et al. Bearing fault diagnosis using GA-ENN based feature selection and parameters optimization for doubly-fed wind turbine[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 149-156.
12 古莹奎, 承姿辛, 朱繁泷. 基于主成分分析和支持向量机的滚动轴承故障特征融合分析[J]. 中国机械工程, 2015, 26(20): 2778-2783.
Gu Ying-kui, Cheng Zi-xin, Zhu Fan-long. Rolling bearing fault feature fusion based on PCA and SVM[J]. China Mechanical Engineering, 2015, 26(20): 2778-2783.
13 陈亮, 周国模, 杜华强, 等. 基于随机森林模型的毛竹林CO2通量模拟及其影响因子[J]. 林业科学, 2018, 54(8): 1-12.
Chen Liang, Zhou Guo-mo, Du Hua-qiang, et al. Simulation of CO2 Flux and Controlling Factors in Moso Bamboo Forest Using Random Forest Algorithm[J]. Scientia Silvae Sinicae, 2018, 54(8): 1-12.
14 冯文卿, 眭海刚, 涂继辉, 等. 高分辨率遥感影像的随机森林变化检测方法[J]. 测绘学报, 2017, 46(11): 1880-1890.
Feng Wen-qing, Sui Hai-gang, Tu Ji-hui, et al. Change detection method for high resolution remote sensing images using random forest[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(11): 1880-1890.
15 徐卓飞, 刘凯, 张海燕. 基于经验模式分解和主元分析的滚动轴承故障诊断方法研究[J]. 振动与冲击, 2014, 33(23): 133-139.
Xu Zhuo-fei, Liu Kai, Zhang Hai-yan. A fault diagnosis method for rolling bearings based on empirical mode decomposition and principal component analysis[J]. Journal of Vibration and Shock, 2014, 33(23) : 133-139.
16 来海锋, 韩斌, 厉力华. 基于集成类随机森林方法的神经胶质瘤特征基因选择的研究[J]. 生物物理学报, 2010, 26(9): 833-845.
Lai Hai-feng, Han Bin, Li Li-hua. An intefrated semi-random forests based approach to gene selection for glioma classification[J]. Acta Biophysica Sinica, 2010, 26(9): 833-845.
17 Svetnik V, Liaw A, Tong C . et al. Random forest: a classification and regression tool for compound classification and QSAR modeling[J]. Journal of Chemical Information and Computer Sciences, 2003, 43 (6) : 1947-1958.
18 李文峰, 戴豪民, 许爱强. 时域新指标和PNN 在滚动轴承故障诊断中的应用[J]. 机械科学与技术, 2016, 35(9): 1382-1386.
Li Wen-feng, Dai Hao-min, Xu Ai-qiang. New time domain index and probabilistic neural network and their application in fault diagnosis of rolling bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(9): 1382-1386.
19 冯桓榰, 张来斌, 石帅. 等 . 基于小波包熵的轴承状态监测和早期故障诊断技术[J]. 科学技术与工程, 2013, 13(18): 5177-5181.
Feng Heng-zhi, Zhang Lai-bin, Shi Shuai . et al. Fault diagnosis of rolling bearing based on wavelet energy entropy[J]. Science Technology and Engineering, 2013, 13(18): 5177-5181.
20 张永祥, 李军, 孙云岭. 基于遗传算法和峰度最佳的滚动轴承故障诊断[J]. 振动与冲击, 2007, 26(8): 122-124.
Zhang Yong-xiang, Li Jun, Sun Yun-ling. Study on design method of resonant demodulation apparatus for rolling elements bearing fault diagnosis[J]. Journal of Vibration and Shock, 2007, 26(8): 122-124.
[1] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[2] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[3] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[4] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[5] Cheng LI,Hao JING,Guang-di HU,Xiao-dong LIU,Biao FENG. High⁃order sliding mode observer for proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2203-2212.
[6] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[7] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[8] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[9] Guang-di HU,Hao JING,Cheng LI,Biao FENG,Xiao-dong LIU. Multi⁃objective sliding mode control based on high⁃order fuel cell model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2182-2191.
[10] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[11] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[12] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[13] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[14] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[15] Qiang GUO,Ming-song LI,Kai ZHOU. Multi⁃mode radar signal sorting based on potential distance graph and improved cloud model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1904-1911.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!