Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (2): 444-455.doi: 10.13229/j.cnki.jdxbgxb.20230347

Previous Articles    

Parameter design method of multiple dynamic vibration absorbers for suppressing multi-frequency resonance of automotive powertrain

Jun-long QU(),Wen-ku SHI,Sheng-yi XUAN(),Zhi-yong CHEN   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2023-04-12 Online:2025-02-01 Published:2025-04-16
  • Contact: Sheng-yi XUAN E-mail:qujl21@mails.jlu.edu.cn;xuanshengyi@jlu.edu.cn

Abstract:

A parameter design method of multiple parallel dynamic vibration absorbers is proposed in order to suppress the powertrain system torsional resonance that exists in various gears of automotive. First, a four degrees of freedom powertrain model is presented, and the expression of the frequency response functions of the vibration system are derived based on the equivalent system with n parallel dynamic vibration absorbers attached. Then, the Nondominated Sorting Genetic Algorithm II is adopted to optimize the frequency ratios and damping ratios of the four parallel dynamic vibration absorbers in order to minimize the angular displacement and acceleration of the vibration system under three different gear ratio conditions. The Technique for Order Preference by Similarity to an Ideal Solution combined with the Entropy Weight Method is utilized to sort the Pareto solutions. Finally, the proposed optimization method is validated effective by comparing with three other traditional methods, and the time and frequency domain simulations are also implemented for the validation. The proposed method can provide references for the optimal parameter design of the dynamic vibration absorber when the eigenvalue of the target system is variable.

Key words: vehicle engineering, automotive powertrain system, torsional vibration, dynamic vibration absorber, multi-objective optimization, multi-frequency vibration damping

CLC Number: 

  • U461.1

Fig.1

Test data of torsional vibration"

Fig.2

Tested resonant modal shape of drivetrain"

Fig.3

4-DOF drivetrain model"

Table 1

Powertrain parameters of each gear"

参数挡位
4挡5挡6挡
J1/(kg·m20.7330.7330.733
J2/(kg·m20.0400.0630.094
J3/(kg·m20.3490.6281.006
J4/(kg·m213.96225.10840.231
k1/(Nm·rad)3.44×1033.44×1033.44×103
k2/(Nm·rad)1.07×1031.92×1033.08×103
k3/(Nm·rad)5.56×1031.0×1041.60×104
c1/[Nm·(s·rad-1)]0.90.90.9
c2/[Nm·(s·rad-1)]0.5010.91.442
c3/[Nm·(s·rad-1)]0.0060.010.016

Table 2

Fourth order natural frequency of drivetrain"

项目挡位
4挡5挡6挡
试验测试/Hz54.3351.9344.20
仿真计算/Hz54.4147.6243.20
误差/%+0.15-8.29-2.26

Fig.4

Modal shape of drivetrain at 6th gear"

Fig.5

Equivalent modal system equipped with multiple dynamic vibration absorbers"

Fig.6

Flowchart of multi-object optimization"

Fig.7

Calculation method of EWM-TOPSIS"

Table 3

Parameters of equivalent system"

挡位

等效惯量

/(kg·m2

等效刚度

/(Nm·rad-1

等效阻尼

/[Nm·(s·rad-1)]

6挡0.100 457 401.22.634 7
5挡0.066 325 936.91.982 2
4挡0.041 674 871.61.509 1

Fig.8

Parallel coordinate graph for Pareto solution"

Table 4

Decision schemes based on EWM-TOPSIS"

参数

方案1

Ci =0.720 7)

方案2

Ci =0.718 6)

方案3

Ci =0.712 1)

定调比α1

0.710 0

0.816 6

0.950 5

1.264 3

0.691 9

0.819 0

0.944 9

1.260 5

0.679 1

0.935 8

0.824 3

1.264 3

α2
α3
α4
阻尼比ζ1

0.150 3

0.152 8

0.196 8

0.280 9

0.150 6

0.152 8

0.196 5

0.280 4

0.148 6

0.194 9

0.153 0

0.287 1

ζ2
ζ3
ζ4

max[He6λ)]/10-4

rad·(Nm)-1

3.679 23.696 33.723 4

max[He5λ)]/10-4

rad·(Nm)-1

3.811 73.849 43.913 7

max[He4λ)]/10-4

rad·(Nm)-1

4.087 93.935 73.866 9

max[Ha6λ)]/

rad·s-2·(Nm)-1

28.191 128.433 628.907 1

max[Ha5λ)]/

rad·s-2·(Nm)-1

36.411 536.646 937.351 4

max[Ha4λ)]/

rad·s-2·(Nm)-1

54.221 354.503 754.382 9

Fig.9

Comparison of different design methods"

Fig.10

Model for validation"

Fig.11

Transient torque of engine"

Fig.12

Relative speed fluctuation between the clutch"

Fig.13

Displacement-frequency response and Acceleration-frequency response"

Fig.14

Time domain response of drivetrain"

1 Wang Y L, Qin X P, Huang S, et al. Design and analysis of a multi-stage torsional stiffness dual mass flywheel based on vibration control[J]. Applied Acoustics, 2016, 104: 172-181.
2 Idehara S J, Flach F L, Lemes D. Modeling of nonlinear torsional vibration of the automotive powertrain[J]. Journal of Vibration and Control, 2018, 24(9): 1774-1786.
3 刘耀宗, 郁殿龙, 赵宏刚, 等. 被动式动力吸振技术研究进展[J]. 机械工程学报, 2007, 43(3): 15-21.
Liu Yao-zong, Yu Dian-long, Zhao Hong-gang, et al. Research progress of passive dynamic vibration absorption technology[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 15-21.
4 Gao P, Xiang C L, Liu H, et al. Reducing variable frequency vibrations in a powertrain system with an adaptive tuned vibration absorber group[J]. Journal of Sound and Vibration, 2018, 425(1): 82-101.
5 李学斌. 动力吸振器的多目标优化和多属性决策研究[J]. 振动工程学报, 2009, 22(3): 319-324.
Li Xue-bin. Research on multi-objective optimization and multi- attribute decision-making of dynamic vibration absorber[J]. Journal of Vibration Engineering, 2009, 22(3): 319-324.
6 王淳, 陈雅菊. 基于多目标粒子群算法的动力吸振器参数优化和决策研究[J]. 舰船科学技术, 2009, 31(11): 46:50.
Wang Chun, Chen Ya-ju. Multi-objective particle optimization and multi-attribute decision making study of dynamic vibration absorber[J]. Ship Science and Technology, 2009, 31(11): 46-50.
7 Brown B, Singh T. Minimax design of vibration absorbers for linear damped systems[J]. Journal of Sound and Vibration, 2011, 330(11): 2437-2448.
8 Cheung Y L, Wong W O. H2 optimization of a non- traditional dynamic vibration absorber for vibration control of structures under random force excitation[J]. Journal of Sound and Vibration, 2011, 330(6): 1039-1044.
9 郝耀东, 何智成, 李光耀, 等. 考虑公差的扭转动力吸振器不确定性优化设计[J]. 中国机械工程, 2018, 29(14): 1645-1652.
Hao Yao-dong, He Zhi-cheng, Li Guang-yao, et al. Uncertain optimization of torsional vibration damper considering tolerant design[J]. China Mechanical Engineering, 2018, 29(14): 1645-1652.
10 Wang X, Yang B T, Yu H, et al. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation[J]. Journal of Sound and Vibration, 2017, 394: 90-108.
11 Haris A, Motato E, Mohammadpour M, et al. On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain[J]. International Journal of Non-Linear Mechanics, 2017, 96: 22-35.
12 高普, 项昌乐, 刘辉, 等. 被动吸振器组在传动系统宽频减振中的应用研究[J]. 汽车工程, 2019, 41(2): 191-197.
Gao Pu, Xiang Chang-le, Liu Hui, et al. A study on the application of passive vibration absorber group on powertrain system wideband vibration reduction[J]. Automotive Engineering, 2019, 41(2): 191-197.
13 上官文斌, 牛立志, 黄兴. 发动机曲轴多级橡胶阻尼式扭转减振器的设计[J]. 汽车工程, 2007, 29(11): 991-994.
Shangguan Wen-bin, Niu Li-zhi, Huang Xing. Design of multi-rubber-element torsional vibration dampers for engine crankshaft[J]. Automotive Engineering, 2007, 29(11): 991-994.
14 王媛文, 董大伟, 孙梅云, 等. 多级扭振减振器在降低车内噪声中的应用[J]. 内燃机工程, 2017, 38(3): 123-130.
Wang Yuan-wen, Dong Da-wei, Sun Mei-yun, et al. Application of multi-dof torsional vibration absorber to reduce interior noise[J]. Chinese Internal Combusting Engine Engineering, 2017, 38(3): 123-130.
15 Phuc V D, Tran V T. Optimization design for multiple dynamic vibration absorbers on damped structures using equivalent linearization method[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2022, 236(1): 41-50.
16 背户一登, 任明章. 动力吸振器及其应用[M]. 北京: 机械工业出版社, 2013.
17 Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
18 贾富淳, 孟宪皆, 雷雨龙. 基于多目标遗传算法的二自由度动力吸振器优化设计[J]. 吉林大学学报: 工学版, 2019, 49(6): 1969-1976.
Jia Fu-chun, Meng Xian-jie, Lei Yu-long. Optimal design of two degrees of freedom dynamic vibration absorber based on multi-objective genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1969-1976.
19 Rezeka S F, Henein N A. A new approach to evaluate instantaneous friction and its components in internal combustion engines[J]. SAE Transactions, 1984, 93: 932-944.
20 Wu H W, Wu G Q. Driveline torsional analysis and clutch damper optimization for reducing gear rattle[J]. Shock and Vibration, 2016, 2016(1): 1-24.
21 Chen L, Shi W K, Chen Z Y. Research on damping performance of dual mass flywheel based on vehicle transmission system modeling and multi-condition simulation[J]. IEEE Access, 2020, 8: 28064-28077.
22 Yoon J Y, Yoon H S. Nonlinear frequency response analysis of a multistage clutch damper with multiple nonlinearities[J]. Journal of Computational and Nonlinear Dynamics, 2014, 9(3): 031007.
[1] Jun-nian WANG,Yu-jing CAO,Zhi-ren LUO,Kai-xuan LI,Wen-bo ZHAO,Ying-yi MENG. Online detection algorithm of road water depth based on binocular vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 175-184.
[2] Kai-feng WANG,Xing-yu MA,Jia-xing ZHU,Xiang-yang XU,Hao-cheng FENG,Yu-long LEI. Matching analysis and experimental verification of heavy-duty vehicle torsional shock absorbers [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 36-51.
[3] Cao TAN,Hao-xin REN,Wen-qing GE,Ya-dong SONG,Jia-yu LU. Improved active disturbance rejection control for hydraulic vibration stages based on the direct-drive valve [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 84-92.
[4] Hong-yu HU,Zheng-guang ZHANG,You QU,Mu-yu CAI,Fei GAO,Zhen-hai GAO. Driver behavior recognition method based on dual-branch and deformable convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 93-104.
[5] Shou-tao LI,Lu YANG,Ru-yi QU,Peng-peng SUN,Ding-li YU. Slip rate control method based on model predictive control [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2687-2696.
[6] Liang WU,Yi-fan GU,Biao XING,Fang-wu MA,Li-wei NI,Wei-wei JIA. Steering four-wheel distributed integrated control method based on LQR [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2414-2422.
[7] Yu-hai WANG,Xiao-zhi LI,Xing-kun LI. Predictive energy saving algorithm for hybrid electric truck under high-speed condition [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2121-2129.
[8] Sheng CHANG,Hong-fei LIU,Nai-wei ZOU. H loop shaping robust control of vehicle tracking on variable curvature curve [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2141-2148.
[9] Jian-ze LIU,Jiang LIU,Min LI,Xin-jie ZHANG. Vehicle speed decoupling road identification method based on least squares [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1821-1830.
[10] Xian-yi XIE,Ming-jun ZHANG,Li-sheng JIN,Bin ZHOU,Tao HU,Yu-fei BAI. Artificial bee colony trajectory planning algorithm for intelligent vehicles considering comfortable [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1570-1581.
[11] Ling HUANG,Zuan CUI,Feng YOU,Pei-xin HONG,Hao-chuan ZHONG,Yi-xuan ZENG. Vehicle trajectory prediction model for multi-vehicle interaction scenario [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1188-1195.
[12] Hong-yan GUO,Lian-bing WANG,Xu ZHAO,Qi-kun DAI. Joint estimation of vehicle mass and road slope considering lateral motion [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1175-1187.
[13] Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213.
[14] Shao-hua WANG,Qi-rui ZHANG,De-hua SHI,Chun-fang YIN,Chun LI. Analysis of nonlinear vibration response characteristics of hybrid transmission system with dual-planetary gear sets [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 890-901.
[15] Xue-jing DU,Ning WANG,Jie ZHANG,Yu-long PEI. Control strategy of lateral stability of semi-trailer train in dangerous section of cold area [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 996-1006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!