Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1266-1274.doi: 10.13229/j.cnki.jdxbgxb.20230710

Previous Articles     Next Articles

Customized bus route optimization with vehicle window

Hao YUE1(),Xiao CHANG1,Jian-ye LIU1,2,Qiu-shi QU3   

  1. 1.Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Ministry of Transport,Beijing Jiaotong University,Beijing 100044,China
    2.Highway Planning Unit,Cangxian Transportation Bureau Communication,Cangzhou 061700,China
    3.Urban Rail Transit Department,Beijing Vocational College of Transport,Beijing 100096,China
  • Received:2023-07-07 Online:2025-04-01 Published:2025-06-19

Abstract:

The vehicle window was introduced to the study to address the problem that the factors considered in the route optimization study of multi-vehicle customized bus are not close to the actual situation. Firstly, the concept of vehicle window was introduced to describe the departure cost, travelling cost, vehicle capacity and travelling speed of different type of customized bus. Secondly, an integer linear programming model with vehicle window was constructed. The model has passenger time-space window and vehicle window as input, and the minimization of enterprise operation cost and passenger travel cost as objective. Finally, a three-segment hybrid encoding genetic algorithm including the customized bus, boarding point and alighting point was designed to solve the model according to the characteristics. It solves the problems of chaotic service order and low optimization efficiency caused by hybrid coding in most stations.An example analysis was carried out in the Sioux Falls network. The results show that: The model with vehicle window is more suitable to the actual scheme, and the greater the difference of vehicle speed ratio, the greater the impact on the scheme.

Key words: transportation planning and management, customized bus, route optimization, vehicle window, genetic algorithm

CLC Number: 

  • U491.1

Table 1

Customized bus route optimization problem input and output"

输入输出
道路网络车辆乘客车辆乘客

节点、

路段长度

车辆

OD、

时间窗

停靠站、

时刻表、

车辆路径、

车辆运用数

上下车时刻表、

乘客-车辆分配

Fig.1

Example diagram of a small physical network"

Table 2

Passenger travel information"

预约乘客数上车地点下车地点期望到达时间
8248:00
12358:30

Table 3

Vehicle configuration scheme"

方案一方案二方案三
车型BABAB
车辆数量/辆11111
车辆容量/(人·辆-11510151015
发车成本/(元·次-12515251525
行驶成本/(元·km-11.51.21.51.21.5
车辆速度/(km·h-13535355035

Table 4

Optimal transportation scheme under different vehicle type configuration scheme"

方案一方案二方案三
最优运输方案

B:2-3

B:4-6

A:2-3

B:4-6

A:2-3

B:4-6

发车成本/元504040
行驶成本/元333030
企业运营成本/元837070
乘客总出行时间/min384.0384.0342.8

Table 5

Notation and description"

符号

类别

符号定义
集合N物理网络中节点的集合
M物理网络中有向弧的集合
T时空网中时空点的集合
A时空网中时空弧的集合
V车辆集合
Vm车型m的车辆集合
P乘客集合
Av时空网中车辆v所属的时空弧的集合
Avp时空网中车辆v对乘客p的服务弧的集合
参数v车辆索引
p乘客索引
k迭代次数索引
sp乘客p的上车点
dp乘客p的下车点
i,tj,s时空点
i,j,t,s时空弧
ω权重系数
Cijtsv车辆v经过时空弧i,j,t,s的运输成本
Cv车辆v单位距离行驶成本
Lijtsv车辆v经过时空弧i,j,t,s的行驶距离
Gv车辆v的发车成本
Cp乘客的单位出行时间成本
tijp乘客pi点到j点的行驶时间
Bcapv车辆v的座位数
tvp车辆v到达乘客p下车点的时刻
ep乘客p下车时间窗的上界
lp乘客p下车时间窗的下界
ov车辆v的起点
dv车辆v的终点
ev车辆v的工作起始时段
lv车辆v的工作结束时段
D迭代次数
s种群规模
pc交叉概率
pm变异概率
决策变量xijtsv车辆路径变量(如果车辆v选择时空弧(i,j,t,s)xijtsv=1;否则,xijtsv=0

Fig.2

Flow chart of proposed algorithm"

Table 6

Cross process"

交叉前染色体1|a-b-c|-|1-[23]-4-5|-|6-7-8-9-10|
染色体2|b-a-c|-|5-[4-3]-2-1|-|10-9-8-7-6|
交叉后子代1|a-b-c|-|1-4-3-2-5|-|6-7-8-9-10|
子代2|b-a-c|-|5-2-3-4-1|-|10-9-8-7-6|

Table 7

Variation process"

变异前|a-b-c|-|1-[2]-3-[4]-5|-|6-7-8-9-10|
变异后|a-b-c|-|1-4-3-2-5|-|6-7-8-9-10|

Fig.3

A simplified Sioux Falls network"

Table 8

Passenger's commuting demand"

乘客预约数上车地点下车地点下车时间窗/min
237[56,60]
148[56,60]
3518[56,60]
5118[56,60]
3127[56,60]
42018[56,60]
2217[56,60]
2228[56,60]
5237[56,60]
32418[56,60]

Fig.4

Optimal solution evolution of genetic algorithm"

Table 9

Transport scheme"

发车

时间

车型路径服务乘客数/人座位利用率/%

到达

时间

7:14A13-12-11-4-5-6-86608:00
7:16A13-24-23-22-20-18-7-87708:00
7:21B13-24-21-20-18-751008:00
7:24B13-12-3-4-5-6-8-7-183608:00
7:27B13-12-3-4-5-6-8-751008:00
7:34B13-24-21-20-184808:00

Table 10

Impact of vehicle type ratio on operational efficiency"

车辆

组成

运用车辆

数/辆

座位平均

利用率/%

乘客总出行时间/min目标函数值/元
A:100%6(A:6,B:0)50.0254.0581.6
B:100%7(A:0,B:7)85.7207.5510.5

A:50%,

B:50%

6(A:2,B:4)75.0222.4501.8

Table 11

Impact of speed ratio on operational efficiency"

车速比/(km·h-1

运用车辆

数/辆

座位平均利用率/%乘客总出行时间/min目标函数值/元
A:B=1:17(A:2,B:5)66.7254.0569.2
A:B=3:46(A:2,B:4)75.0222.4501.8
A:B=3:57(A:1,B:6)75.0163.8464.8
A:B=1:27(A:0,B:7)85.7142.0432.2

Table 12

Imapct of time window width on operational efficiency"

时间窗宽度时间窗宽度/min运用车辆数/辆座位平均利用率/%乘客总出行时间/min目标函数值/元
减少4个单位18(A:1,B:7)60.0204.3542.5
减少2个单位37(A:2,B:5)66.7215.2512.8
不变56(A:2,B:4)75.0222.4501.8
增加2个单位76(A:1,B:5)85.7214.6491.4
[1] Hamilton B. Wasteful commuting[J]. The Journal of Political Economy, 1982, 90(5): 935-953.
[2] Kirby R F, Bhatt K U. Guidelines on the operation of subscription bus services[J]. National Technical Information Service, 1974: 432-451.
[3] 詹海林, 董景瞬. 交运集团(青岛)开通"定制公交",真的会成为公交车史上一次革命性创新吗?[J]. 运输经理世界, 2013(9): 20-23.
Zhan Hai-lin, Dong Jing-shun. Qingdao transport Group(Qingdao) launched a "customized bus", will it really be a revolutionary innovation in the history of public transport?[J]. Transport Manager World, 2013(9): 20-23.
[4] Liu T, Ceder A. Analysis of a new public-transport-service concept: customized bus in China[J]. Transport Policy, 2015, 39(4):63-76.
[5] Plum D, Ali H H. An evolutionary approach to vehicle routing problem with dynamic time and precedence relationships[J]. Journal of Computational Methods in Sciences & Engineering, 2005, 5(Sup.1): 57-66.
[6] Chiarot G, Silvestri C. Multi-line customized bus planner for on-demand origin-destination travel requests[C]∥Proceedings of the 14th International Conference on Management of Digital EcoSystems, Beijing, China, 2022:84-87.
[7] 王健, 曹阳, 王运豪. 考虑出行时间窗的定制公交线路车辆调度方法[J]. 中国公路学报, 2018, 31(5): 143-150.
Wang Jian, Cao Yang, Wang Yun-hao. Customized bus route vehicle schedule method considering travel time windows[J]. China Journal of Highway and Transport, 2018, 31(5): 143-150.
[8] 胡郁葱, 陈栩, 罗嘉陵. 多起终点多车型混载的定制公交线路规划模型[J]. 广西师范大学学报:自然科学版, 2018, 36(4): 1-11.
Hu Yu-cong, Chen Xu, Luo Jia-ling. Network design model of customized bus in diversified operation of multi-origin-destination and multi-type vehicle mixed load[J]. Journal of Guangxi Normal University (Natural Science Edition), 2018, 36(4): 1-11.
[9] Guo R G, Guan W, Zhang W Y. Route design problem of customized buses: mixed integer programming model and case study[J]. Transportation Engineering Part A: Systems, 2018, 144(11):1-14.
[10] 马昌喜, 王超, 郝威, 等. 突发公共卫生事件下应急定制公交线路优化[J]. 交通运输工程学报, 2020, 20(3): 89-99.
Ma Chang-xi, Wang Chao, Hao Wei, et al. Emergency customized bus route optimization under public health emergencies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 89-99.
[11] 杨明, 黄乐. 面向早高峰通勤客流的多车型定制公交线网优化[J]. 长沙理工大学学报:自然科学版, 2020, 17(3): 71-78.
Yang Ming, Huang Le. Network optimization of multi-vehicle-type customized bus for commuting demand during morning peak hour[J]. Journal of Changsha University of Technology(Natural Science Edition), 2020, 17(3): 71-78.
[12] Wang C, Ma C X, Xu X C. Multi-objective optimization of real-time customized bus routes based on two-stage method[J]. Physica A: Statistical Mechanics and its Applications, 2020, 537: No.122774.
[13] Ma C X, Wang C, Xu X C. A multi-objective robust optimization model for customized bus routes[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2359-2370.
[14] 杜太升, 陈明明. 考虑时间窗的通勤定制公交线路优化[J]. 交通运输工程与信息学报, 2023, 21(1): 152-163.
Du Tai-sheng, Chen Ming-ming. Optimization of customized bus routes for commuting considering time windows[J]. Journal of Transportation Engineering and Information, 2023, 21(1): 152-163.
[15] 孙倩. 城市定制公交线路优化与车型适配[D]. 西安: 长安大学运输工程学院, 2022.
Sun Qian. Urban customized bus service design for jointly optimizing bus line and mixed fleet size[D].Xi'an: School of Transportation Engineering, Chang'an University, 2022.
[16] 王正武, 陈涛, 宋名群. 同时接送模式下响应型接驳公交运行路径与调度的协调优化[J]. 交通运输工程学报, 2019, 19(5): 139-149.
Wang Zheng-wu, Chen Tao, Song Ming-qun. Coordinated optimization of operation routes and schedules for responsive feeder transit under simultaneous pick-up and delivery mode[J]. Journal of Traffic and Transportation Engineering, 2019,19(5):139-149.
[17] 马昌喜, 郝威, 沈金星, 等. 定制公交线路优化综述[J].交通运输工程学报, 2021, 21(5): 30-41.
Ma Chang-xi, Hao Wei, Shen Jin-xing, et al. Review on customized bus route optimization[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 30-41.
[1] Xiang-hai MENG,Guo-rui WANG,Ming-yang ZHANG,Bi-jiang TIAN. Traffic accident prediction model of mountain highways based on selection integration [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1298-1306.
[2] Wen-jing WU,Chun-chun DENG,Hong-fei JIA,Shu-hang SUN. Evaluation of road network unblocked reliability and identification of critical sections under influence of flooding [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1250-1257.
[3] Shu-hong MA,Jun-jie ZHANG,Xi-fang CHEN,Guo-mei LIAO. Identifying urban functional structures using time-series taxi data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 603-613.
[4] Tian-yang GAO,Da-wei HU,Rui-sen JIANG,Xue WU,Hui-tian LIU. Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 537-545.
[5] Yu-ran LI,Fei WANG,Cai-hua ZHU,Fei HAN,Yan LI. Chain-effect utility of factors influencing residents' commuting mode choice in polluted weather [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 577-590.
[6] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
[7] Pei-ning TIAN,Rui-yong TONG,Hai-peng WANG,Bao-hua MAO,Hao-xiang ZHANG,Xia LU. Optimization of cross-line train operation across the urban rail transit loop line [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 132-140.
[8] Chang-jiang ZHENG,Tong-tong TAO,Zhi-chao CHEN. Cascading failure model based on adjustable redistribution of traffic flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2441-2450.
[9] Xiao-yue WEN,Guo-min QIAN,Hua-hua KONG,Yue-jie MIU,Dian-hai WANG. TrafficPro: a framework to predict link speeds on signalized urban traffic network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2214-2222.
[10] Jin ZHU,Qi HUANG. Automated terminal horizontal transportation scheduling and route planning under network resource allocation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2245-2255.
[11] Liang-li ZHANG,Xiao-feng MA. New energy vehicle charging station location method based on improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2275-2281.
[12] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Li-ping YAN. Double layer optimization model of charging pile based on random charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2238-2244.
[13] Da-yi QU,Hao-min LIU,Zi-yi YANG,Shou-chen DAI. Dynamic allocation mechanism and model of traffic flow in bottleneck section based on vehicle infrastructure cooperation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2187-2196.
[14] Gui-zhen CHEN,Hui-ting CHENG,Cai-hua ZHU,Yu-ran LI,Yan LI. A risk evaluation method for urban intersections considering drivers' physiological information [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1277-1284.
[15] Jin ZHU,Yang LIU. Integrated optimization of storage space allocation and yard crane scheduling in import container yards [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1347-1354.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .