Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (4): 1298-1306.doi: 10.13229/j.cnki.jdxbgxb.20230725

Previous Articles     Next Articles

Traffic accident prediction model of mountain highways based on selection integration

Xiang-hai MENG1(),Guo-rui WANG1,Ming-yang ZHANG1,Bi-jiang TIAN1,2   

  1. 1.School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin 150090,China
    2.National Engineering Laboratory for Prevention and Control Technology of Land Transport Meteorological Disasters,Yunnan Provincial Transportation Planning and Design Research Institute Co. ,Ltd. ,Kunming 650200,China
  • Received:2023-07-11 Online:2025-04-01 Published:2025-06-19

Abstract:

To improve the prediction accuracy and reduce the robustness of the traffic accident prediction model, this paper uses the Stacking integration strategy to construct an integrated traffic accident prediction model. Firstly, single traffic accident prediction models based on eight machine learning models, such as Decision Tree and Extra Tree, were constructed and the MIC test was used to measure the similarity of each traffic prediction model with the graph coloring method, and the models with low similarity and high diversity were selected to participate in the integration. Secondly, Box-Cox transformations were applied to the results of the single accident prediction models and different weights were assigned to each single model separately using feature weighting method. Finally, models such as BP neural network and Logistic regression were selected as meta-learners for Stacking integration. The results of the study show that the prediction accuracy of the integrated model with BP neural network selected for the meta-learner is higher than other integrated models, and the MAE and RMSE of the integrated model have been respectively reduced by 24% and 14% and the R2 has been improved by 6% compared to the single accident prediction model with the highest prediction accuracy.

Key words: transportation planning and management, traffic accident prediction, mountain highways, machine learning, integrated learning

CLC Number: 

  • U491.31

Table 1

Basic information about traffic accident data"

高速公

路名称

道路长

度/km

起终点桩号统计年限伤亡事故财产损失事故
高速公路一104K2457-K25613565 113
高速公路二48K2579-K26275301 443
高速公路三59K1959-K20185285 069

Table 2

Classification of road section types for forecasting units"

路段单元类型路段单元个数公路一公路二公路三
直线-上坡路段2291026166
直线-下坡路段2291026166
直线-凸型竖曲线82261640
直线-凹型竖曲线114441654
右转-上坡路段163646732
右转-下坡路段165647328
右转-凸型竖曲线96413322
右转-凹型竖曲线108454518
左转-上坡路段165647328
左转-下坡路段163646732
左转-凸型竖曲线96413322
左转-凹型竖曲线108454518

Table 3

Continuous variable descriptive statistics"

变量标识

变量

名称

单位最大值最小值平均值标准差
NA年平均事故次数15.5001.221.89
DT日交通量pcu/day14 7976 3901 02462792
L路段长度m598.3650.18244.00135.97
LL直线段长度m3 796.490395.82772.36
AH平曲线偏角(°)185.68023.6029.05
CH平曲线曲率1/km7.6901.201.50
LH平曲线长度m2 299.860326.87383.78
LS纵坡长度m4 199.8410616.97616.54
SD

竖曲线坡

度差

(°)8.1501.301.70
ASC

当前累积

坡度

%0-4.98-0.641.23
LSC

当前累积

坡长

m26 917.2802 029.344 881.48
AS纵坡坡度(°)6.00-6.0002.25

Table 4

Discrete variable descriptive statistics"

变量标识/赋值变量名称

百分比

/%

变量表示变量名称

百分比

/%

HC平曲线VT竖曲线类型
0直线路段41.340纵坡路段61.41
-1右偏29.33-1凸型竖曲线17.93
1左偏29.331凹型竖曲线20.66
TC缓和曲线RT路段类型
0直线路段41.341基本路段83.21
153.352收费站10.33
-15.313服务区5.31
CS连续下坡4桥梁1.15
125.91
074.09

Fig.1

5-fold cross-check"

Table 5

Single traffic accident prediction model test results"

单一模型MAERMSER2
决策树0.340.590.74
ET0.320.520.8
RF0.350.610.74
GBDT0.350.510.81
KNN0.430.690.64
XGBoost0.290.430.84
LightGBM0.330.510.81
CatBoost0.30.460.83

Table 6

MIC value of single traffic accident prediction model"

单一事故

预测模型

决策树

模型

ET

模型

RF

模型

GBDT

模型

KNN

模型

XGBoost

模型

LightGBM

模型

CatBoost

模型

决策树模型10.970.880.940.950.960.820.69
ET模型0.9710.930.990.970.990.870.73
RF模型0.880.9310.920.90.950.870.82
GBDT模型0.940.990.9210.960.980.870.76
KNN模型0.950.970.90.9610.960.820.71
XGBoost模型0.960.990.950.980.9610.90.77
LightGBM模型0.820.870.870.870.820.910.76
CatBoost模型0.690.730.820.760.710.770.761

Fig.2

Maximum information coefficient circular heat map"

Table 7

Single accident prediction model adjacency matrix"

单一事故预测模型决策树模型

ET

模型

RF

模型

GBDT

模型

KNN

模型

XGBoost

模型

LightGBM

模型

CatBoost

模型

决策树模型00000011
ET模型00000011
RF模型00000011
GBDT模型00000011

KNN

模型

00000011
XGBoost模型00000001
LightGBM模型11111001
CatBoost模型11111110

Fig.3

Undirected graph for single traffic accidentprediction model"

Fig.4

Coloring scheme for undirected graphs"

Fig.5

Incident prediction modeling process based on improved Stacking integration"

Fig.6

Traffic frequency prediction results based on improved Stacking"

Table 8

Comprehensive comparison of stacking integration models with different meta-learners"

元学习选取/模型精度

BP神经

网络

多重线形

回归

Logistic

回归

岭回归
MAE0.220.270.270.25
RMSE0.370.450.430.41
R20.890.820.850.86
1 张显强, 贺中华, 梁永娜, 等. 贵州省道路分形特征及其对交通事故影响机制[J]. 公路, 2017, 62(6):197-203.
Zhang Xian-qiang, He Zhong-hua, Liang Yong-na, et al. Fractal characteristics of road and its impact mechanism on traffic accidents in Guizhou Province[J]. Highway, 2017, 62(6): 197-203.
2 Macedo M R, Maia M L A, Rabbani E R K, et al. Traffic accident prediction model for rural highways in Pernambuco[J]. Case Studies on Transport Policy, 2022, 10(1): 278-286.
3 马壮林, 邵春福, 李霞. 基于Logistic模型的公路隧道交通事故严重程度的影响因素[J]. 吉林大学学报:工学版,2010, 40(2): 423-426.
Ma Zhuang-lin, Shao Chun-fu, Li Xia. Analysis of factors affecting accident severity in highway tunnels based on Logistic model[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(2): 423-426.
4 陈英, 袁华智, 黄中祥, 等. 零截尾负二项模型在交叉口事故预测中的应用[J]. 中国公路学报, 2020, 33(4): 146-154.
Chen Ying, Yuan Hua-zhi, Huang Zhong-xiang, et al. Modeling intersection traffic crashes using a zero-truncated negative binomial model[J]. China Journal of Highway and Transport, 2020, 33(4): 146-154.
5 Roland J, Way P D, Firat C, et al. Modeling and predicting vehicle accident occurrence in Chattanooga, Tennessee[J]. Accident Analysis & Prevention, 2021(149): 105-117.
6 Ihueze C C, Onwurah U O. Road traffic accidents prediction modelling: an analysis of Anambra State, Nigeria[J]. Accident Analysis & Prevention, 2018(7), 112: 21-29.
7 谢学斌, 孔令燕. 基于ARIMA和XGBoost组合模型的交通事故预测[J]. 安全与环境学报, 2021, 21(1):277-284.
Xie Xue-bin, Kong Ling-yan. On the ways to the traffic accident prediction based on the ARIMA and XGBoost combined model[J]. Journal of Safety and Environment, 2021, 21(1): 277-284.
8 纪俊红, 昌润琪, 温廷新. 基于GSK-AdaBoost-LightGBM的交通事故死亡人数预测研究[J]. 安全与环境工程, 2021, 28(1): 24-28.
Ji Jun-hong, Chang Run-qi, Wen Ting-xin. Prediction of traffic accident death toll based on GSK-AdaBoost-LightGBM[J]. Safety and Environmental Engineering, 2021, 28(1): 24-28.
9 Vilaa M, Macedo E, Coelho M C. A rare event modelling approach to assess injury severity risk of vulnerable road users[J]. Safety, 2019, 5(2): 29-38.
10 Xing L, He J, Li Y, et al. Comparison of different models for evaluating vehicle collision risks at upstream diverging area of toll plaza[J]. Accident Analysis and Prevention, 2020(135): 86-97.
11 Kwon O H, Rhee W, Yoon Y, et al. Application of classification algorithms for analysis of road safety risk factor dependencies[J]. Accident Analysis and Prevention, 2015(75): 1-15.
12 Zeng K H, Chou S H, Chan F H, et al. Agent-centric risk assessment: accident anticipation and risky region localization[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2222-2230.
13 宁静, 佘红艳, 赵东, 等. 一种路网级交通事故风险预测方法[J]. 北京邮电大学学报, 2022, 45(2): 72-78.
Ning Jing, She Hong-yan, Zhao Dong, et al. A road-level traffic accident risk prediction method[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(2): 72-78.
14 Lin L, Wang Q, Sadek A W. A novel variable selection method based on frequent pattern tree for real-time traffic accident risk prediction[J]. Transportation Research Part C: Emerging Technologies, 2015(55): 444-459.
15 孙棣华, 唐亮, 付青松, 等. 基于量子神经网络的道路交通事故预测[J]. 交通运输系统工程与信息, 2010, 10(5): 104-109.
Sun Di-hua, Tang Liang, Fu Qing-song, et al. Road traffic accidents forecasting based on quantum neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(5): 104-109.
16 覃薇. 基于负二项回归分析的高速公路神经网络事故预测模型[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2017.
Qin Wei. Neural network crash prediction model of freeway based on negative binomial regression analysis[D]. Harbin: School of Transportation Science and Engineering of Harbin Institute of Technology, 2017.
17 范中洲, 赵羿, 周宁, 等. 基于灰色BP神经网络组合模型的水上交通事故数预测[J]. 安全与环境学报, 2020, 20(3): 857-861.
Fan Zhong-zhou, Zhao Yi, Zhou Ning, et al. Integrated model for forecasting waterway traffic accidents based on the Gray-BP neural network[J]. Journal of Safety and Environment, 2020, 20(3): 857-861.
[1] Qing-liang JIN,Xin-sen ZHOU,Yi CHEN,Cheng-wen WU. Predictive model for identifying innovative university talents based on the swarm intelligence evolution enhanced kernel extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1763-1771.
[2] Xiu-zhi ZHAO,De-hong XIE. Discrimination method for Pu-er tea varieties based on noise-robust feature extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1756-1762.
[3] Sheng-qi MEI,Xiao-dong LIU,Xing-ju WANG,Xu-feng LI,Teng WU,Xiang-xu CHENG. Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1595-1603.
[4] Hao YUE,Xiao CHANG,Jian-ye LIU,Qiu-shi QU. Customized bus route optimization with vehicle window [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1266-1274.
[5] Wen-jing WU,Chun-chun DENG,Hong-fei JIA,Shu-hang SUN. Evaluation of road network unblocked reliability and identification of critical sections under influence of flooding [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1250-1257.
[6] Yin-fei DAI,Xiu-zhen ZHOU,Yu-bao LIU,Zhi-yuan LIU. In⁃vehicle network intrusion detection system based on CAN bus data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 857-865.
[7] Shu-hong MA,Jun-jie ZHANG,Xi-fang CHEN,Guo-mei LIAO. Identifying urban functional structures using time-series taxi data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 603-613.
[8] Tian-yang GAO,Da-wei HU,Rui-sen JIANG,Xue WU,Hui-tian LIU. Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 537-545.
[9] Yu-ran LI,Fei WANG,Cai-hua ZHU,Fei HAN,Yan LI. Chain-effect utility of factors influencing residents' commuting mode choice in polluted weather [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 577-590.
[10] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
[11] Lei ZHANG,Jing JIAO,Bo-xin LI,Yan-jie ZHOU. Large capacity semi structured data extraction algorithm combining machine learning and deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2631-2637.
[12] Chang-jiang ZHENG,Tong-tong TAO,Zhi-chao CHEN. Cascading failure model based on adjustable redistribution of traffic flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2441-2450.
[13] Xiao-yue WEN,Guo-min QIAN,Hua-hua KONG,Yue-jie MIU,Dian-hai WANG. TrafficPro: a framework to predict link speeds on signalized urban traffic network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2214-2222.
[14] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Li-ping YAN. Double layer optimization model of charging pile based on random charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2238-2244.
[15] Da-yi QU,Hao-min LIU,Zi-yi YANG,Shou-chen DAI. Dynamic allocation mechanism and model of traffic flow in bottleneck section based on vehicle infrastructure cooperation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2187-2196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .