Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1497-1515.doi: 10.13229/j.cnki.jdxbgxb.20240381

Previous Articles     Next Articles

Review on image information hiding methods based on deep learning

Ru-bo ZHANG1(),Shi-qi CHANG1,Tian-yi ZHANG2()   

  1. 1.College of Mechanical & Electronic Engineering,Dalian Minzu University,Dalian 116600,China
    2.School of Cyber Science and Technology,Beihang University,Beijing 100191,China
  • Received:2024-04-11 Online:2025-05-01 Published:2025-07-18
  • Contact: Tian-yi ZHANG E-mail:zhangrubo@dlnu.edu.cn;zhang_tianyi@buaa.edu.cn

Abstract:

Image information hiding technology can achieve the goals of confidential communication, copyright authentication and other information security protection behaviors during the transmission of pictures by hiding information covertly in images, which is one of the hotspots of current research in the field of information security. Firstly, we discuss the important and difficult problems of image information hiding methods based on deep learning. Secondly, we discuss the deep learning-based image steganography method from three perspectives: structural features, training features and application features. Then, we introduce the main datasets and evaluation criteria related to the domain and summarize the experimental performance. Next, this paper summarizes the applications of image information hiding techniques. Finally, we discuss the research directions of image information hiding techniques to provide insights and suggestions for the further developments in the field.

Key words: information processing technology, information hiding, deep learning, image information hiding, steganography, digital watermarking

CLC Number: 

  • TP309.7

Fig.1

Generalization of image information hiding methods"

Fig.2

Process of staged image information hiding method"

Fig.3

Process of image information hiding method based on reversible network"

Fig.4

Channel coding with injected redundancy"

Fig.5

Channel coding for dimensionality reduction compression"

Fig.6

Schematic representation of concealing and recovery losses"

Fig.7

OSN-based implementation of covert communication flow"

Fig.8

Encoding hyperlinks and tapping to recognise them"

Fig.9

StegaStamp in real-life scenarios"

Table 1

Summary of selected datasets"

数据集文献使用图像数量/张图像格式图像尺寸
ImageNet

[42,48,53,54,

56,63,70]

超过1 400万jpg
CelebA496567超过20万jpg178×218×3

MS-

COCO

[41,42,44,49,

53,56,60-62]

超过33万jpg
DIV2K

[41,42,44,49,

53,55-57,64]

训练集800

验证集100

测试集100

png

BOSS

base

5

训练集9 074

测试集1 000

tiff512×512×1
MNIST48

训练集60 000

测试集10 000

idx28×28×1
LFW4313 233jpg150×150×3
CIFAR-1060

50 000训练集

10 000测试集

32×32×3

Fig.10

Sample images of commonly used datasets"

Fig.11

Visually degraded portraits with(a) higher PSNR values than (b)"

Table 2

Comparison of PSNR and SSIM values for selected methods"

隐写方法

PSNR/dB

隐写-载体/秘密-恢复

SSIM

隐写-载体/秘密-恢复

4bit-LSB33.68/31.260.940 1/0.903 3
StegGAN4242.24/37.170.990 5/0.950 8
Rahim等4832.9/36.60.96/0.96
ISN5438.05/35.380.954/0.955
HiNet5344.6/46.780.992 8/0.995 2
DeepMIH5640.31/36.630.980 0/0.960 4

Table 3

Comparison of BPP values for selected methods"

隐写方法隐写容量/BPP
HiDDeN440.203
SteganoGAN414.4
文献[488

Table 4

Performance comparison of deep learning based image information hiding methods"

方法名称(来源&年份)数据集秘密信息形式

PSNR/dB

隐写-载体/秘密-恢复

SSIM

隐写-载体/秘密-恢复

BPP
HiDDeN44(ECCV2018)COCO二进制37.270.203
SteganoGAN41(2019)DIV2K二进制36.520.852.63
COCO36.330.884.4
FNNS49(ICLR2022)COCO二进制30.050.713
DIV2K26.250.732
CelebA27.770.723
StegGAN42(Springer2022)ImageNet图像42.24/37.170.990 5/0.950 8
COCO36.26/31.920.979 9/0.942 8
DIV2K34.39/31.850.974 4/0.941 0
KODAK30.97/29.490.978 8/0.936 3
SIPI30.97/29.490.978 8/0.936 3
ISN54(CVPR2021)ImageNet图像38.05/35.380.954/0.955
Paris StreetView40.49/43.330.980/0.991
HiNet53(ICCV2021)DIV2K图像48.99/52.860.9971/0.9992
COCO46.52/46.980.9961/0.9957
ImageNet44.60/46.780.9928/0.9952
DeepMIH56(TPAMI2023)DIV2K图像43.72/41.410.9895/0.9801
COCO40.30/36.550.9805/0.9613
ImageNet40.31/36.630.9800/0.9604
RIIS55(CVPR2022)DIV2K图像—/44.19
ImageNet43.97/46.71
PRIS57(2023)DIV2K图像41.39/40.71
ImageNet39.90/39.26
COCO37.98/37.16
VOC39.64/39.35
IGA47(2022)COCO二进制32.59
DIV2K46.02
TDSL60(ACMMM2019)COCO二进制33.51
ABDH61(AAAI2020)Set5、Set14图像33.50/30.420.964 7/0.948 7
UDH70(NeurLPS2020)ImageNet图像39.13/35.00.985/0.976
GSN65(ACMMM2022)CelebA二进制1~2
Rahim等48(ECCV2018)ImageNet图像32.92/36.580.96/0.968
Luo等46(CVPR2020)COCO二进制33.7
Tan等62(IEEE2022)COCO二进制41.840.983 23
RoSteALS59(CVPR2023)CLIC二进制32.68±1.750.88±0.06
MetFACE34.46±1.910.89±0.07
Stock1K*33.27±2.320.89±0.08
StegaStamp64(CVPR2020)ImageNet二进制28.500.905
[1] 张卫明, 王宏霞, 李斌, 等. 多媒体隐写研究进展[J]. 中国图象图形学报, 2022, 27(6): 1918-1943.
Zhang Wei-ming, Wang Hong-xia, Li Bin, et al. Overview of steganography on multimedia[J]. Journal of Image and Graphics, 2022, 27(6): 1918-1943.
[2] Subramanian N, Elharrouss O, Almaadeed S, et al. Image steganography: a review of the recent advances[J]. IEEE Access, 2021, 9: 23409-23423.
[3] Tsai P, Hu Y C, Yeh H L. Reversible image hiding scheme using predictive coding and histogram shifting[J]. Signal Processing, 2009, 89(6): 1129-1143.
[4] Pan F, Li J, Yang X. Image steganography method based on PVD and modulus function[C]∥2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 2011: 282-284.
[5] 孙曦, 张卫明, 俞能海, 等. 基于空域图像变换参数扰动的隐写术[J]. 通信学报, 2017, 38(10): 166-174.
Sun Xi, Zhang Wei-ming, Yu Neng-hai, et al. Steganography based on parameters' disturbance of spatial image transform[J]. Journal on Communications, 2017, 38 (10): 166-174.
[6] Rustad S, Syukur A, Andono P N. Inverted LSB image steganography using adaptive pattern to improve imperceptibility[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(6): 3559-3568.
[7] Fazli S, Moeini M. A robust image watermarking method based on DWT, DCT, and SVD using a new technique for correction of main geometric attacks[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(2): 964-972.
[8] Abadi R Y, Moallem P. Robust and optimum color image watermarking method based on a combination of DWT and DCT[J]. Optik, 2022, 261: No.169146.
[9] 赵瑶瑶, 李万社. 基于离散小波变换和离散余弦变换的彩色图像水印算法[J].应用数学进展, 2021, 10: No.1096.
Zhao Yao-yao, Li Wan-she. Color image watermarking algorithm based on discrete wavelet transform and discrete cosine transform[J]. Advances in Applied Mathematics, 2021,10: No.1096.
[19] Wang R Z, Lin C F, Lin J C. Image hiding by optimal LSB substitution and genetic algorithm[J]. Pattern Recognition, 2001, 34(3): 671-683.
[11] Fridrich J, Goljan M, Du R. Detecting LSB steganography in color, and gray-scale images[J]. IEEE Multimedia, 2001, 8(4): 22-28.
[12] Mandal P C, Mukherjee I, Paul G, et al. Digital image steganography: a literature survey[J]. Information Sciences, 2022, 609: 1451-1488.
[13] Chhikara S, Kumar R. Information theoretic steganalysis of processed image LSB steganography[J]. Multimedia Tools and Applications, 2023, 82(9): 13595-13615.
[14] 付章杰, 李恩露, 程旭, 等. 基于深度学习的图像隐写研究进展[J]. 计算机研究与发展, 2021, 58(3): 548-568.
Fu Zhang-jie, Li En-lu, Cheng Xu, et al. Recent advances in image steganography based on deep learning[J]. Journal of Computer Research and Development, 2021, 58(3): 548-568.
[15] Ehrlich M, Davis L, Lim S N, et al. Analyzing and mitigating jpeg compression defects in deep learning[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 2357-2367.
[16] Khayam S A. The discrete cosine transform (DCT): theory and application[J]. Journal of Michigan State University, 2003, 114(1): 1-31.
[17] Poyueh P Y, Lin H J. A DWT based approach for image steganography[J]. International Journal of Applied Science and Engineering, 2006, 4(3): 275-290.
[18] Ruanaidh J, Dowling W J, Boland F M. Phase watermarking of digital images[J]. Proceedings of 3rd IEEE International Conference on Image Processing, 1996, 3: 239-242.
[19] Li Y. Research and application of deep learning in image recognition[C]∥2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 2022: 994-999.
[20] 徐涛, 马克, 刘才华. 基于深度学习的行人多目标跟踪方法[J]. 吉林大学学报: 工学版, 2021, 51(1): 27-38.
Xu Tao, Ma Ke, Liu Cai-hua. Multi object pedestrian tracking based on deep learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(1): 27-38.
[21] Lopez M M, Kalita J. Deep learning applied to NLP[J/OL]. [2024-04-01].
[22] Zhang Z, Geiger J, Pohjalainen J, et al. Deep learning for environmentally robust speech recognition: an overview of recent developments[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2018, 9(5): 1-28.
[23] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
Huang Li-wei, Jiang Bi-tao, Shou-ye Lyu, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.
[24] Heaton J B, Polson N G, Witte J H. Deep learning for finance: deep portfolios[J]. Applied Stochastic Models in Business and Industry, 2017, 33(1): 3-12.
[25] 沈权猷, 张小波, 李文豪, 等. U-Net在肺结节分割中的应用进展[J]. 计算机应用, 2023, 43(): 250-257.
Shen Quan-you, Zhang Xiao-bo, Li Wen-hao, et al. Progress of U-Net applications to lung nodule segmentation[J]. Journal of Computer Applications, 2023,43(Sup.1): 250-257.
[26] Alom M Z, Yakopcic C, Hasan M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): No.014006.
[27] 付章杰, 王帆, 孙星明, 等. 基于深度学习的图像隐写方法研究[J]. 计算机学报, 2020, 43(9): 1656-1672.
Fu Zhang-jie, Wang Fan, Sun Xing-ming, et al. Research on steganography of digital images based on deep learning[J]. Chinese Journal of Computers, 2020,43(9): 1656-1672.
[28] 张茹, 刘建毅, 刘功申, 等. 数字内容安全[M]. 北京: 北京邮电大学出版社, 2017.
[29] Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18.
[30] Xu G, Wu H Z, Shi Y Q. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5): 708-712.
[31] Geng L, Zhang W, Chen H, et al. Real-time attacks on robust watermarking tools in the wild by CNN[J]. Journal of Real-Time Image Processing, 2020, 17: 631-641.
[32] Wei P, Zhu Z, Luo G, et al. Breaking robust data hiding in online social networks[J]. IEEE Signal Processing Letters, 2022, 29: 2682-2686.
[33] Chaumont M. Deep Learning in Steganography and Steganalysis[M]. New York: Academic Press, 2020.
[34] 夏道勋, 王林娜, 宋允飞, 等. 深度神经网络模型数字水印技术研究进展综述[J]. 科学技术与工程, 2023, 23(5): 1799-1811.
Xia Dao-xun, Wang Lin-na, Song Yun-fei, et al. Review of deep neural network digital watermarking technology[J]. Science Technology and Engineering, 2023, 23(5): 1799-1811.
[35] Denis R, Madhubala P. Hybrid data encryption model integrating multi-objective adaptive genetic algorithm for secure medical data communication over cloud-based healthcare systems[J]. Multimedia Tools and Applications, 2021, 80: 21165-21202.
[36] Jiang X H. Digital watermarking and its application in image copyright protection[C]∥2010 International Conference on Intelligent Computation Technology and Automation, Changsha, China, 2010: 114-117.
[37] Megías D, Mazurczyk W, Kuribayashi M. Data hiding and its applications: digital watermarking and steganography[J]. Applied Sciences, 2021, 11(22): No.10928.
[38] 赵洁, 邹天宇, 黄展鹏, 等. 基于手写数字水印的医学图像版权保护研究[J]. 医疗卫生装备, 2016, 37(6): 36-38.
Zhao Jie, Zou Tian-yu, Huang Zhan-peng, et al. Research on copyright protection of medical images based on handwritten digital watermarking[J]. Chinese Medical Equipment Journal, 2016, 37(6): 36-38.
[39] 周娜, 成茗, 贾孟霖, 等. 基于缩略图加密和分布式存储的医学图像隐私保护[J]. 计算机应用, 2023, 43(10): 3149-3155.
Zhou Na, Cheng Ming, Jia Meng-lin, et al. Medical image privacy protection based on thumbnail encryption and distributed storage[J]. Journal of Computer Applications, 2023, 43(10): 3149-3155.
[40] 刘佳, 柯彦, 雷雨, 等. 生成对抗网络在图像隐写中的应用[J]. 武汉大学学报: 理学版, 2019, 65(2): 139-152.
Liu Jia, Ke Yan, Lei Yu, et al. Application of generative adversarial networks in image steganography[J]. Journal of Wuhan University (Science Edition), 2019, 65 (2): 139-152.
[41] Zhang K A, Cuesta I A, Xu L, et al. SteganoGAN: high capacity image steganography with GANs[J/OL].[2024-04-01].
[42] Singh B, Sharma P K, Huddedar S A, et al. StegGAN: hiding image within image using conditional generative adversarial networks[J]. Multimedia Tools and Applications, 2022, 81(28): 40511-40533.
[43] Wang Z, Gao N, Wang X, et al. SSteGAN: self-learning steganography based on generative adversarial networks[C]∥Neural Information Processing: 25th International Conference, Siem Reap, Cambodia, 2018: 253-264.
[44] Zhu J, Kaplan R, Johnson J, et al. Hidden: hiding data with deep networks[C]∥Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 2018: 657-672.
[45] Sun W, Zhou J, Li Y, et al. Robust high-capacity watermarking over online social network shared images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(3): 1208-1221.
[46] Luo X, Zhan R, Chang H, et al. Distortion agnostic deep watermarking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13548-13557.
[47] Zhang H, Wang H, Cao Y, et al. Robust data hiding using inverse gradient attention[J/OL]. [2024-04-01].
[48] Rahim R, Nadeem S. End-to-end trained CNN encoder-decoder networks for image steganography[C]∥Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 2018: 723-729.
[49] Kishore V, Chen X, Wang Y, et al. Fixed neural network steganography: train the images, not the network[C]∥International Conference on Learning Representations, Vienna, Austria, 2021: 1-10.
[50] Dinh L, Krueger D, Bengio Y. Nice: non-linear independent components estimation[J/OL]. [2024-04-01].
[51] Ardizzone L, Kruse J, Wirkert S, et al. Analyzing inverse problems with invertible neural networks[J/OL]. [2024-04-01].
[52] Dinh L, Sohl D J, Bengio S. Density estimation using real NVP[C]∥ICLR 2017-Conference Track Proceedings, Toulon, France, 2019: No.160508803.
[53] Jing J, Deng X, Xu M, et al. HiNet: deep image hiding by invertible network[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 4733-4742.
[54] Lu S P, Wang R, Zhong T, et al. Large-capacity image steganography based on invertible neural networks[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10816-10825.
[55] Xu Y, Mou C, Hu Y, et al. Robust invertible image steganography[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 7875-7884.
[56] Guan Z, Jing J, Deng X, et al. DeepMIH: deep invertible network for multiple image hiding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 372-390.
[57] Yang H, Xu Y, Liu X, et al. PRIS: practical robust invertible network for image steganography[J/OL]. [2024-04-01].
[58] Mou C, Xu Y, Song J, et al. Large-capacity and flexible video steganography via invertible neural network[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 22606-22615.
[59] Bui T, Agarwal S, Yu N, et al. Rosteals: robust steganography using autoencoder latent space[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023: 933-942.
[60] Liu Y, Guo M, Zhang J, et al. A novel two-stage separable deep learning framework for practical blind watermarking[C]∥Proceedings of the 27th ACM International Conference on Multimedia,Nice, France, 2019: 1509-1517.
[61] Yu C. Attention based data hiding with generative adversarial networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1120-1128.
[62] Tan J, Liao X, Liu J, et al. Channel attention image steganography with generative adversarial networks[J]. IEEE Transactions on Network Science and Engineering, 2021, 9(2): 888-903.
[63] Cui J, Zhang P, Li S, et al. Multitask identity-aware image steganography via minimax optimization[J]. IEEE Transactions on Image Processing, 2021, 30: 8567-8579.
[64] Tancik M, Mildenhall B, Ng R. Stegastamp: invisible hyperlinks in physical photographs[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle, USA, 2020: 2117-2126.
[65] Wei P, Li S, Zhang X, et al. Generative steganography network[C]∥Proceedings of the 30th ACM International Conference on Multimedia, New York, USA, 2022: 1621-1629.
[66] Liu X, Ma Z, Ma J, et al. Image disentanglement autoencoder for steganography without embedding[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, USA, 2022: 2303-2312.
[67] You Z, Ying Q, Li S, et al. Image generation network for covert transmission in online social network[C]∥Proceedings of the 30th ACM International Conference on Multimedia, New York, USA, 2022: 2834-2842.
[68] Hu D, Detone D, Malisiewicz T. Deep charuco: dark charuco marker pose estimation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 8436-8444.
[69] Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 248-255.
[70] Zhang C, Benz P, Karjauv A, et al. Udh: universal deep hiding for steganography, watermarking, and light field messaging[J]. Advances in Neural Information Processing Systems, 2020, 33: 10223-10234.
[71] Lin T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]∥Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, 2014: 740-755.
[72] Eirikur A, Radu T. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 126-135.
[73] Liu Z, Luo P, Wang X, et al. Deep learning face attributes in the wild[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 3730-3738.
[74] Bas P, Filler T, Pevný T. Break our steganographic system: the ins and outs of organizing boss[C]∥International Workshop on Information Hiding, Berlin, Germany, 2011: 59-70.
[75] Deng L. The mnist database of handwritten digit images for machine learning research best of the web [J]. IEEE Signal Processing Magazine, 2012, 29(6): 141-142.
[76] Setiadi D R I M. PSNR vs SSIM: imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications, 2021, 80(6): 8423-8444.
[77] Zhang R, Isola P, Efros A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 586-595.
[78] Zhang L, Zhang L, Mou X, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
[79] 杨榆, 雷敏. 信息隐藏与数字水印[M]. 北京: 北京邮电大学出版社, 2017.
[80] Pandey B K, Pandey D, Wairya S, et al. Application of integrated steganography and image compressing techniques for confidential information transmission[J]. Cyber Security and Network Security, 2022, 3: 169-191.
[81] Morkel T. Image Steganography Applications for Secure Communication[M]. Pretoria: University of Pretoria (South Africa), 2012.
[82] Pandey D, Wairya S, Mahdawi R S, et al. Secret data transmission using advanced steganography and image compression[J]. International Journal of Nonlinear Analysis and Applications, 2021, 12: 1243-1257.
[83] 张雪锋. 信息安全概论[M]. 北京: 人民邮电出版社, 2014.
[84] 郑钢, 胡东辉, 戈辉, 等. 生成对抗网络驱动的图像隐写与水印模型[J]. 中国图象图形学报, 2021, 26(10): 2485-2502.
Zheng Gang, Hu Dong-hui, Ge Hui, et al. End-to-end image steganography and watermarking driven by generative adversarial networks[J]. Chinese Journal of Image and Graphics, 2021, 26(10): 2485-2502.
[85] 吴汉舟, 张杰, 李越, 等. 人工智能模型水印研究进展[J]. 中国图象图形学报, 2023, 28(6): 1792-1810.
Wu Han-zhou, Zhang Jie, Li Yue, et al. Research progress of artificial intelligence model watermarking[J]. Journal of Image and Graphics, 2023, 28(6): 1792-1810.
[86] 郑秋梅, 刘楠, 王风华. 基于复杂攻击的脆弱水印图像完整性认证算法[J]. 计算机科学, 2020, 47(10): 332-338.
Zheng Qiu-mei, Liu Nan, Wang Feng-hua. Complex attack based fragile watermarking for image integrity authentication algorithm[J]. Computer Science, 2020, 47(10): 332-338.
[87] 张文芳. 远程会诊中的医疗数据水印算法研究[D]. 南京: 南京信息工程大学计算机学院, 2023.
Zhang Wen-Fang. Research on medical data watermarking algorithm in remote consultation[D]. Nanjing: School of Computer Science, Nanjing University of Information Engineering, 2023.
[88] Zeng C, Liu J, Li J, et al. Multi-watermarking algorithm for medical image based on KAZE-DCT[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 15: 1735-1743.
[89] 刘泳彬, 徐涛, 苏锐豪, 等. 基于数字水印的医学图像信息隐藏系统[J]. 现代计算机, 2019(20): 42-45.
Liu Yong-bin, Xu Tao, Su Rui-hao, et al. A medical image information hiding system based on digital watermarking[J]. Modern Computer, 2019(20): 42-45.
[90] Anand A, Singh A K. Watermarking techniques for medical data authentication: a survey[J]. Multimedia Tools and Applications, 2021, 80: 30165-30197.
[91] Karakus S, Avci E. A new image steganography method with optimum pixel similarity for data hiding in medical images[J]. Medical Hypotheses, 2020, 139: No.109691.
[92] Priyadharshini A, Umamaheswari R, Jayapandian N, et al. Securing medical images using encryption and LSB steganography[C]∥International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 2021: 1-5.
[93] Balu S, Babu C N K, Amudha K. Secure and efficient data transmission by video steganography in medical imaging system[J]. Cluster Computing, 2019, 22(Sup.2): 4057-4063.
[94] 卢臻. AI换脸骗局频现 人工智能出圈后如何监管? [N]. 通信信息报, 2023-06-14.
Lu Zhen. How to supervise after AI face changing scam occurs frequently? [N]. Journal of Communication Information, 2023-06-14.
[95] 魏哲哲. “AI换脸”, 便利背后有风险[N]. 人民日报, 2023-12-04.
Wei Zhe-zhe. "AI changing faces", convenience behind the risk [N]. People's Daily, 2023-12-04.
[1] Jian LI,Huan LIU,Yan-qiu LI,Hai-rui WANG,Lu GUAN,Chang-yi LIAO. Image recognition research on optimizing ResNet-18 model based on THGS algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1629-1637.
[2] Bin WEN,Yi-fu DING,Chao YANG,Yan-jun SHEN,Hui LI. Self-selected architecture network for traffic sign classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1705-1713.
[3] Ya-li XUE,Tong-an YU,Shan CUI,Li-zun ZHOU. Infrared small target detection based on cascaded nested U-Net [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1714-1721.
[4] Zhen-jiang LI,Li WAN,Shi-rui ZHOU,Chu-qing TAO,Wei WEI. Dynamic estimation of operational risk of tunnel traffic flow based on spatial-temporal Transformer network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1336-1345.
[5] Wei-zhi NIE,Fei YIN,Yi-shan SU. Review of taskdriven imaging sonar for underwater target recognition approaches [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1163-1175.
[6] Meng-xue ZHAO,Xiang-jiu CHE,Huan XU,Quan-le LIU. A method for generating proposals of medical image based on prior knowledge optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 722-730.
[7] Yuan-ning LIU,Zi-nan ZANG,Hao ZHANG,Zhen LIU. Deep learning-based method for ribonucleic acid secondary structure prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 297-306.
[8] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
[9] Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645.
[10] Lei ZHANG,Jing JIAO,Bo-xin LI,Yan-jie ZHOU. Large capacity semi structured data extraction algorithm combining machine learning and deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2631-2637.
[11] Bai-you QIAO,Tong WU,Lu YANG,You-wen JIANG. A text sentiment analysis method based on BiGRU and capsule network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2026-2037.
[12] Xin-gang GUO,Ying-chen HE,Chao CHENG. Noise-resistant multistep image super resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 2063-2071.
[13] Li-ping ZHANG,Bin-yu LIU,Song LI,Zhong-xiao HAO. Trajectory k nearest neighbor query method based on sparse multi-head attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1756-1766.
[14] Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776.
[15] Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Chun-Bao, MA Wen-Xing, XU Rui. Calculation and analysis of axial force in hydrodynamic torque converter based on CFD[J]. 吉林大学学报(工学版), 2009, 39(05): 1181 -1185 .
[2] LIANG Jie,XIE Jun,GAO Yin-han,SUN Qiang. Vehicle interior sound quality preference evaluation model based on correlation analysis[J]. 吉林大学学报(工学版), 2009, 39(增刊2): 274 -0278 .
[3] BAI Zhi-fan, LI Gui-zhong, WANG Chao. Microstructure and mechanical property of the welded joints of S355J2W+N steel[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 202 -204 .
[4] LUO Qing-Yu, SUN Bao-Feng, WU Wen-Jing, JUAN Zhi-Cai. Predicting traffic mode split under congestion pricing based on mixed logit model[J]. 吉林大学学报(工学版), 2010, 40(05): 1230 -1234 .
[5] XU Bin-bin, YANG Zhao-jun, CHEN Fei, HAO Qing-bo, ZHAO Hong-wei, LI Guo-fa. Reliability model of CNC machine tools based on non-homogenous poisson process[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 210 -214 .
[6] XU Cheng-cheng, LIU Pan, WANG Wei, LI Zhi-bin. Real time crash risk prediction model on freeways under nasty weather conditions[J]. 吉林大学学报(工学版), 2013, 43(01): 68 -73 .
[7] YAN Qing-dong, LIU Shu-cheng, WEI Wei, YANG Hui-bin. Evaluation for matching between hydrodynamic torque converter and engine based on improved radar chart method[J]. 吉林大学学报(工学版), 2013, 43(06): 1510 -1516 .
[8] LI Xue-jun, YANG Sheng, LI Zhen-ju, YANG A-hua, LIU Tao. Quick extracting of marking cross points and accurate locating algorithm by single-point-mode matching[J]. 吉林大学学报(工学版), 2014, 44(4): 1197 -1202 .
[9] CHEN Peng-fei, TIAN Di, YANG Guang. Design and implementation of LIBS software based on MVC architecture[J]. 吉林大学学报(工学版), 2016, 46(1): 242 -245 .
[10] HOU Shou-wu, JIAO Ying-hou, CHEN Zhao-bo, LI Ming-zhang. Vibration compression of quadrate steel beams using mechanical mobility method[J]. 吉林大学学报(工学版), 2013, 43(05): 1295 -1301 .