Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (12): 3885-3897.doi: 10.13229/j.cnki.jdxbgxb.20240458

Previous Articles    

Setting method and effect evaluation of linear guiding system in highway tunnels

Yong-zheng YANG1,2(),Zhi-gang DU1,2(),Jia-lin MEI1,2   

  1. 1.School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China
    2.Engineering Research Center of the Ministry of Transportation Information and Safety Education,Wuhan 430063,China
  • Received:2024-04-26 Online:2025-12-01 Published:2026-02-03
  • Contact: Zhi-gang DU E-mail:yyongzheng@yeah.net;zhig_du7@163.com

Abstract:

To improve traffic safety in highway tunnels, it is suggested to use line shaped visual guidance facilities to enhance local brightness and contrast of the tunnel, and form a linear guidance system that outlines the tunnel outline and road alignment. Firstly, set up a tunnel simulation scenario, conduct driving simulation experiments and questionnaire surveys, and analyze the impact of various linear induction facilities/systems on drivers' vision, psychology, and driving tasks; Then, explore the effects of the size, direction, continuity, and combination of various induction facilities on the optimization of visual reference frames and spatial rights-of-way perception. The results show that linear guiding system can effectively enhance the salience of the tunnel environment, reduce the difficulty of obtaining visual information, and ease the driver's nervousness. Longitudinal linear guiding facilities are conducive to clarifying the road boundary and the direction of travel, and enhancing the driver's perception of location. Vertical and horizontal linear guiding facilities help to clarify the outline of the tunnel and enhance driver's speed control. Through a reasonable combination of different linear guidance facilities, to complement the shortcomings, to achieve the overall improvement of driving safety indicators.

Key words: engineering of communication and transportation system, highway tunnels, linear guiding system, visual reference system, driving safety

CLC Number: 

  • U453.1

Fig.1

Comparison of the effect of point lighting, linear lighting and linear guiding"

Table 1

Inductive analysis of typical linear guiding facilities"

元素类型设施示例应用示例
点状信息突起路标

竖向短线段

0.2 m<长<0.5 m

矩形轮廓标

竖向中线段

0.5 m≤长<2 m

弹性交通柱

竖向长线段

2 m≤长

反光条

/竖向线形诱导标

纵向短线段

长<1.50 m

路缘短立面标记

纵向中线段

1.50 m≤长<3 m

路缘长立面标记 /横向诱导标

纵向长线段

3 m≤长

腰带线

环状信息

6 m≤长

LED轮廓带

/洞口环形立面标记

Fig.2

Spatial right-of-way and visual reference system"

Fig.3

Improvement framework of linear guiding system for tunnel traffic safety"

Table 2

Tunnel design parameters"

隧道特征设计参数
隧道类型双洞、单向三车道
隧道长度2 000 m
车道宽度3.75 m
限速60~100 km/h
建筑净空高度5 m
灯具设置方式单排、左右两侧对称设置
灯具尺寸0.3 m×0.6 m
灯具间距5 m

Fig.4

Simulation scene"

Table 3

Setting parameters of each scene"

场景设置参数备注
1.无设施原始场景
2.突起路标车道外边线两侧,间隔10 m点状、低位诱导、近端可视
3.路缘短立面标记黄黑色,长2.5 m,宽0.2 m,倾斜45°,中心距地面0.3 m,间隔10 m纵向中线段、低位诱导、中端可视
4.竖向反光条黄绿色,长4 m,宽0.2 m,间隔50 m竖向长线段、中位诱导、中端可视
5.腰带线蓝色、宽0.3 m,中心距地面2 m纵向长线段、中位诱导、中端可视
6.LED轮廓带黄绿色,长24 m,宽0.3 m,间隔250 m环状(竖向+横向线段)、高位诱导、远端可视
7.系统 (3+5)设置参数与场景3、5相同简单线性诱导系统、低中位诱导、近中端可视
8.系统 (4+6)设置参数与场景4、6相同简单线性诱导系统、中高位诱导、中远端可视
9.系统 (2+3+4+5+6)设置参数与场景2、3、4、5、6相同复杂线性诱导系统、全高度诱导、全距离可视

Fig.5

Driving simulation and experimental equipment"

Table 4

Drivers information statistics"

性别驾驶人类型年龄平均年龄驾龄平均行驶里程

男(18人);

女(12人)

高校师生(14人);出租车司机(8人);当地居民(8人)22~58 岁31.3 岁1~4年(8人);5~8年(13人);>8年(9人)142 000 km

Fig.6

Fixation duration distribution of each scene"

Fig.7

Improvement effect of visual information acquisition ability of each scene"

Table 5

Questionnaire score and explanation"

很清晰

/很舒适

清晰

/舒适

一般

/一般

不清晰

/紧张

很不清晰

/很紧张

54321

Fig.8

Driver's psychological survey scores in each scene"

Fig.9

Comparison of visual information acquisition ability and psychological comfort"

Fig.10

The speed distribution of each scene"

Table 6

Fitting model of each scene"

场景模型ANOVA
R2FP
1y1=-0.36+9.89e(x-92.92)2/11.070.95145.80.00*
2y2=-0.01+11.69e(x-90.04)2/8.550.98332.50.00*
3y3=0.18+10.85e(x-88.76)2/8.790.98425.90.00*
4y4=-0.01+12.82e(x-88.51)2/7.800.99557.10.00*
5y5=-0.14+10.80e(x-90.69)2/9.570.97246.50.00*
6y6=-0.05+12.59e(x-90.66)2/8.010.98526.20.00*
7y7=-0.21+11.06e(x-90.52)2/9.480.96217.40.00*
8y8=0.28+13.53e(x-89.90)2/6.880.98418.20.00*
9y9=0.21+14.02e(x-88.43)2/6.750.96205.20.00*

Fig.11

The improvement effect of speed maintenance"

Fig.12

Trajectory offset distribution of each scene"

Fig.13

Improvement effect of lane keeping"

Fig.14

Comparison of speed control and lane keeping improvement effect"

[1] Yang Y, Alonso F, Du Z, et al. How to resolve the contradiction between driving safety and lighting energy conservation in a highway tunnel?—An experiment on linear guiding system[J]. Transportation Research Part F: Praffic Psychology and Behaviour, 2024, 103: 319-339.
[2] Ma Z, Fang S, Liu S. Analysis of the relationship between the number of traffic accidents and the traffic flow & section location in extra-long tunnel[J]. Engineering, 2020, 12(2), 71-81.
[3] 徐进, 潘存书, 符经厚, 等. 典型道路场景以及场景切换时的速度行为特性[J].吉林大学学报: 工学版, 2021, 51(4):1331-1341.
Xu Jin, Pan Cun-shu, Fu Jing-hou, et al. Speed behavior characteristic on typical driving scenarios and along switched scenarios[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1331-1341.
[4] Zheng Z, Du Z, Yan Q. The impact of rhythm-based visual reference system in long highway tunnels[J]. Safety Science, 2017, 95: 75-82.
[5] 王首硕, 杜志刚, 冯守中, 等. 高速公路隧道入口区域视线诱导系统有效性研究[J]. 交通运输工程学报, 2021, 21(2): 267-277.
Wang Shou-shuo, Du Zhi-gang, Feng Shou-zhong, et al. Research on effectiveness of visual guiding system in entrance zone of freeway tunnel[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 267-277.
[6] Yeung J S, Wong Y D. Road traffic accidents in Singapore expressway tunnels[J]. Tunnelling and Underground Space Technology, 2013, 38: 534-541.
[7] 杜志刚, 倪玉丹, 杨理波, 等. 高速公路隧道曲线路段视线诱导设施有效性试验[J]. 交通运输工程学报, 2020, 20 (1):215-225.
Du Zhi-gang, Ni Yu-dan, Yang Li-bo, et al. Effectiveness experiment of sight induction facilities of curve sections in highway tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 215-225.
[8] 叶飞, 苏恩杰, 梁晓明, 等. 公路隧道景观设计现状和思考[J]. 中国公路学报, 2022, 35(1):23-37.
Ye Fei, Su En-jie, Liang Xiao-ming, et al. Review and thinking on landscape design of highway tunnel[J]. China Journal of Highway and Transport, 2022, 35(1): 23-37.
[9] 何世永, 周渊涛, 梁波, 等. 长大隧道光环境下驾驶人信息感知表征方法研究现状和进展[J]. 隧道建设:中英文, 2022, 42(2):176-187.
He Shi-yong, Zhou Yuan-tao, Liang Bo, et al. Research status and progress on driver information perception and representation methods in long tunnel light environment[J]. Tunnel Construction, 2022, 42(2): 176-187.
[10] Xu R, Ye H, Hu B, et al. Intelligent dimming control and energy consumption monitoring system of tunnel lighting[J]. Lighting Research & Technology, 2024, 56: 72-86.
[11] 赵晓华, 鞠云杰, 李佳, 等. 基于驾驶行为和视觉特性的长大隧道突起路标作用效果评估[J]. 中国公路学报, 2020, 33(6): 29-41.
Zhao Xiao-hua, Ju Yun-jie, Li Jia, et al. Evaluation of the effect of RPMs in extra-long tunnels based on driving behavior and visual characteristics[J]. China Journal of Highway and Transport, 2020, 33(6): 29-41.
[12] Du Z, Wang S, Yang L, et al. Experimental study on the efficacy of retroreflective rings in the curved freeways tunnels[J]. Tunnelling and Underground Space Technology, 2021, 110: No 103813.
[13] Jiao F, Du Z, Wong Y, et al. Design and evaluation of visual guiding facilities along urban road tunnel horizontal curves based on vision and speed perception[J]. Tunnelling and Underground Space Technology, 2023, 133: No.104937.
[14] 郑号染, 杜志刚, 王首硕, 等. 基于线性诱导的高速公路隧道交通安全优化设计[J]. 中国安全科学学报, 2023, 33(8): 134-141.
Zheng Hao-ran, Du Zhi-gang, Wang Shou-shuo, et al. Optimal design of highway tunnel traffic safety based on linear induction[J]. China Safety Science Journal, 2023, 33(8):134-141.
[15] 陈莹, 杜志刚, 徐进, 等. 基于线形诱导的低等级公路弯道交通设施优化[J]. 公路, 2022, 67(10): 292-300.
Chen Ying, Du Zhi-gang, Xu Jin, et al. Optimization of traffic facilities on curves of low grade highway based on linear guidance[J]. Highway, 2022, 67(10):292-300.
[16] 杜志刚, 韩磊, 梅家林, 等. 基于心理旋转效应的小半径公路长隧道视觉环境优化研究框架[J]. 同济大学学报: 自然科学版, 2023, 51(9): 1372-1382.
Du Zhi-gang, Han Lei, Mei Jia-lin, et al. Research framework for visual environment optimization of small radius highway long tunnels based on psychological rotation effect[J]. Journal of Tongji University (Natural Science), 2023, 51(9): 1372-1382.
[17] 徐进, 王延鹏, 陈海源, 等. 山区公路回头曲线小客车纵向行驶特性及运行速度模型[J]. 吉林大学学报: 工学版, 2023, 53(12): 3432-3445.
Xu Jin, Wang Yan-peng, Chen Hai-yuan, et al. Longitudinal driving characteristics and operating speed prediction model of cars on hairpin curves of mountainous roads[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(12):3432-3445.
[18] 赵晓华, 刘畅, 亓航, 等. 高速公路交通事故影响因素及异质性分析[J]. 吉林大学学报: 工学版, 2024, 54(4): 987-995.
Zhao Xiao-hua, Liu Chang, Qi Hang, et al. Influencing factors and heterogeneity analysis of highway traffic accidents[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(4):987-995.
[19] 李洪涛, 王琳虹, 李俊达. 公路交叉口照明和限速对视觉搜索能力的影响[J]. 吉林大学学报: 工学版, 2023, 53(8): 2287-2297.
Li Hong-tao, Wang Lin-hong, Li Jun-da. Influence of lighting and speed limit on visual search ability at highway intersections[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(8):2287-2297.
[20] 王海晓, 李永翔, 丁旭, 等. 基于边缘智能的城市下穿隧道车辆行车安全预测[J]. 吉林大学学报: 工学版, 2022, 52(6): 1337-1343.
Wang Hai-xiao, Li Yong-xiang, Ding Xu, et al. Traffic safety prediction of urban underpass tunnel vehicles based on edge intelligence[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1337-1343.
[1] Zhao-wei QU,Ming-yang WANG,Zhe WANG,Xian-min SONG,Yun-xiang ZHANG,Jing-cheng HUANG. Adaptive scheduling method for bus based on autonomous modular vehicles main⁃auxiliary function allocation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(9): 2946-2957.
[2] Chang-ru MU,Liang XU,Guo-zhu CHENG. Collision prevention performance of outsourced U-shaped steel concrete composite guardrail based on reasonable energy allocation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2669-2680.
[3] Yan-bo LI,Jing-yuan WANG,Yuan-yuan Chen,Shao-feng CHENG,Hao-nan LYU,Jun-shuo CHEN. RAMS assessment approach of self-consistent energy system in highway service areas [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2243-2250.
[4] Xiao-feng JI,Ruo-fan DENG,Xin QIAO,Hao-tian GUAN. Nonlinear influence of built environment on temporal aggregation modes of shared bicycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(7): 2233-2242.
[5] Sheng-yu YAN,Ming-jie CHENG,Hong-ce TIAN,Hong-yu WANG,Yong-heng ZHOU,Bo-hao MA. Scheduling algorithm for battery electric vehicle in closed scenic area [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 1984-1993.
[6] Yan-yan QIN,Teng-fei XIAO,Qin-zhong LUO,Bao-jie WANG. Car-following safety analysis and control strategy for foggy freeway [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1241-1249.
[7] Yi-yong PAN,Xiang-yu XU. Model for predicting severity of accidents based on MobileViT network considering imbalanced data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 947-953.
[8] Xi-zhen ZHOU,He GONG,Dun-dun LI,Yan-jie JI,Jie YAN. Nonlinear model for impact of built environment on curb parking spaces occupancy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2520-2530.
[9] Ya-qin QIN,Zheng-fu QIAN,Ji-ming XIE. Vehicle cooperative obstacle avoidance strategy driven by CLAM model and trajectory data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1311-1322.
[10] Hong-tao LI,Lin-hong WANG,Jun-da LI. Influence of lighting and speed limit on visual search ability at highway intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2287-2297.
[11] Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015.
[12] Zhen-liang LIU,Cun-bao ZHAO,Yun-peng WU,Mi-na MA,Long-shuang MA. Life⁃cycle seismic resilience assessment of highway bridge networks using data⁃driven method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1695-1701.
[13] Chao SUN,Hao-wei YIN,Wen-yun TANG,Zhao-ming CHU. Sensor deployment strategy and expansion inference of mobile phone data for traffic demand estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1070-1077.
[14] Hong-fei JIA,Ying-jun XU,Li-li YANG,Nan WANG. League member selection and benefit distribution of commercial vehicles multi⁃modal transportation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1060-1069.
[15] Zhi-wei LIU,Zheng-yun SONG,Jian-rong LIU. Impact of shared autonomous vehicles on choice of subway station connection methods [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3424-3431.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!