吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1088-1093.doi: 10.13229/j.cnki.jdxbgxb201404029

Previous Articles     Next Articles

Hardware/software partitioning algorithm based on multiple hardware implementation exploration

NIU Xiao-xia1, WU Yan-xia1, ZHU Ruo-ping2, GU Guo-chang1, LIU Hai-bo1   

  1. 1.College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;
    2.Computer Center of Heilongjiang Province, Harbin 150001, China
  • Received:2013-02-06 Online:2014-07-01 Published:2014-07-01

Abstract: An improved genetic algorithm is proposed, which can solve the partitioning problem and the hardware implementation exploration simultaneously. In accordance with the characteristic of hardware delay-area contradiction in implementation, the mutation operator is chosen adaptively based on the Q-learning algorithm and greedy algorithm. The objectives are to avoid the blindness in mutation and to enhance the capability of local search of the genetic algorithm. Experiment results show that the improved genetic algorithm is more efficient than the greedy algorithm and the standard genetic algorithm in terms of searching quality and convergence.

Key words: computer engineering, reconfigurable systems, field-programmable gate array(FPGA), hardware/software partitioning, genetic algorithm, Q-learning algorithm

CLC Number: 

  • TP30
[1] Wolf W. A Decade of Hardware/Software Codesign[M]. New York: IEEE Computer, 2003.
[2] Dou Shuang, Ding Shan, Zhang Shi, et al. GA-based algorithm for hardware/software partitioning with resource contentions[C]∥The 2nd Int Conf Advanced Computer Control, 2010:68-72.
[3] 周雁.基于遗传和粒子群优化算法的软硬件划分方法研究[D]. 上海:华东师范大学, 2011. Zhou Yan. Research on hardware/software partitioning method based on GA and PSO[D].Shanghai: East China Normal University, 2011.
[4] 肖平, 徐成, 杨志邦, 等. 基于改进模拟退火算法的软硬件划分[J]. 计算机应用, 2011, 31(7):1797-1803. Xiao Ping, Xu Cheng, Yang Zhi-bang, et al. Hardware/software partitioning based on improved simulated annealing algorithm[J].Journal of Computer Applications, 2011, 31(7):1797-1803.
[5] 马天义. 低功耗软硬件划分算法研究[D]. 哈尔滨:哈尔滨工业大学, 2009. Ma Tian-yi. Research on low power hardware / software partitioning algorithms[D]. Harbin: Harbin Institute University, 2009.
[6] Li Y, Callahan T, Darnell E, et al. Hardware-software co-design of embedded reconfigurable architectures[C]∥Proceedings of the Design Automation Conference, 2000:507-512.
[7] Stitt G. Hardware/software partitioning with multi-version implementation exploration[C]∥Proceedings of Great Lakes Symposium in VLSI, Orlando, FL, USA, 2008:143-146.
[8] Li J, He H, Man H, et al. A general-purpose FPGA-based reconfigurable platform for video and image processing[C]∥Proceedings of the 6th International Symposium on Neural Networks: Advances in Neural Networks-Part III, 2009: 299-309.
[9] Pellerin D, Thibault S. Evaluating hardware acceleration strategies using C-to-hardware tools[J]. XCell Journal, 2006, 58:16-18.
[10] Watkins C J C H, Dayan P. Technical note: Q -learning[J]. Machine Learning, 1992, 8(3-4): 279-292.
[11] Free Software Foundation, Inc. GNU profiler[EB/OL].[2011-11-21].http//sourceware.org/binutils/docs/gprof/index.html.
[1] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[2] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398-1404.
[3] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0 [J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[4] LI Qi-liang, CAO Guan-ning, LI Xuan, YANG Zhi-gang, ZHONG Li-yuan. Multi-parameters aerodynamic optimization of sedan [J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[5] SUN Wen, WANG Qing-nian, WANG Jun-nian. Yaw-moment control of motorized vehicle for energy conservation during cornering [J]. 吉林大学学报(工学版), 2018, 48(1): 11-19.
[6] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[7] WANG Zhan-zhong, ZHAO Li-ying, CAO Ning-bo. Hazardous material transportation scheduling model based on mutilayer coding genetic algorithm [J]. 吉林大学学报(工学版), 2017, 47(3): 751-755.
[8] ZHENG Ming, ZHUO Mu-gui, ZHANG Shu-gong, ZHOU You, LIU Gui-xia. Reconstruction for gene regulatory network based on hybrid parallel genetic algorithm and threshold value method [J]. 吉林大学学报(工学版), 2017, 47(2): 624-631.
[9] ZHAO Yun-peng, YU Tian-lai, JIAO Yu-bo, GONG Ya-feng, SONG Gang. Damage identification method and factor evaluation for irregular-shaped bridge [J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866.
[10] CHEN Jin, LI Song-lin, SUN Zhen-ye, CHEN Gang. Integrated design of aerodynamic and structural performance for wind turbine dedicated airfoil [J]. 吉林大学学报(工学版), 2016, 46(6): 1940-1945.
[11] WEI Li-ying, LI Ming-jun. Bus priority signal timing model considering the influence of traffic guidance [J]. 吉林大学学报(工学版), 2016, 46(3): 777-784.
[12] GUO Yu-quan, LI Xiong-fei, LIU Xin. Heuristic genetic algorithm associated with spectral analysis uncovering multi-scale community of complex networks [J]. 吉林大学学报(工学版), 2015, 45(5): 1592-1600.
[13] REN Wei-wu, HU Liang, ZHAO Kuo. Intrusion alert correlation model based on data mining and ontology [J]. 吉林大学学报(工学版), 2015, 45(3): 899-906.
[14] LIU Lei, YANG Dong. Multi-objective genetic optimization algorithm for SLA-aware service composition problem [J]. 吉林大学学报(工学版), 2015, 45(1): 267-273.
[15] NA Jing-xin, GAO Jian-feng. Top-down design method based on local search and global optimization for cross-sectional size of bus body [J]. 吉林大学学报(工学版), 2014, 44(6): 1564-1570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!