Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 504-511.doi: 10.13229/j.cnki.jdxbgxb20181255

Previous Articles    

Simulation of stamping process of some reinforcement plate below windows of railway vehicles

Zheng-wei GU1(),Lin CHEN1,Li-hui ZHAO1,Hong XU1,Xin LI1,Ge YU1,2()   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.Roll Forging Institute, Jilin University, Changchun 130022,China
  • Received:2018-12-21 Online:2020-03-01 Published:2020-03-08
  • Contact: Ge YU E-mail:gzweii@163.com;yuge@jlu.edu.cn

Abstract:

The forming process of some reinforcement plates below the windows of railway vehicles was stimulated and analyzed using the general finite element software Autoform. The influences of the process parameters such as drawbead, blankholder force and die-clearance were investigated. The results show that the split defect of sheet is caused by uneven material flow, and the wrinkle defect is caused by the assembly of materials in corners, which can be eliminated through decorating additional drawbeads in the corners. The optimal combination of parameters was found by orthogonal experiments, which could further control the split and the wrinkle defects. The optimized parameters are force factor of drawbead 0.35, constant force of the blankholder 800 kN and the single-side die clearance 0.20 mm. Compensation to the die face based on springback can significantly control the contour accuracy. The most optimal coefficient is 1.1 times of the springback amount. Forming experiments were conducted according to the simulation results and the qualified product was obtained, which proves validity of the proposed defect controlling methods.

Key words: metal science and metal technics, split, springback control, reinforcement plate below the windows of railway vehicles, numerical simulation

CLC Number: 

  • TG386

Fig.1

Models of top surface of stiffening plate"

Fig.2

Uniaxial tension test"

Table 1

Stamping center and direction"

坐标轴冲压中心/mm冲压方向/(°)
x4 60084
y1 480-180
z1 630-90

Fig.3

Dieface for drawing"

Fig.4

Finite element model for tool"

Fig.5

Wrinkle and scrapping defects after drawing based on initial conditions of forming test"

Fig.6

FLD of drawing process befor touching 2 mm after assigning corner drawbead"

Table 2

Distribution of orthogonal experiment factors"

水平影响因素
AB/kNC/mm

1

2

3

0.25

0.35

0.45

600

800

1 000

0.10

0.15

0.20

Table 3

Orthogonal experiment table"

序列影响因素
AB/kNC/mm

1

2

3

4

5

6

7

8

9

A1(0.25)

A1(0.25)

A1(0.25)

A2(0.35)

A2(0.35)

A2(0.35)

A3(0.45)

A3(0.45)

A3(0.45)

B1(600)

B2(800)

B3(1 000)

B1(600)

B2(800)

B3(1 000)

B1(600)

B2(800)

B3(1 000)

C1(0.10)

C2(0.15)

C3(0.20)

C2(0.15)

C3(0.20)

C1(0.10)

C3(0.20)

C1(0.10)

C2(0.15)

Table 4

Orthogonal experiment result"

序列影响因素

最大

减薄

边角

起皱

拉延

不足

ABC

1

2

3

4

5

6

7

8

9

A1

A1

A1

A2

A2

A2

A3

A3

A3

B1

B2

B3

B1

B2

B3

B1

B2

B3

C1

C2

C3

C2

C3

C1

C3

C1

C2

0.246

0.253

0.260

0.282

0.288

0.295

0.312

0.319

0.325

严重

严重

轻微

严重

严重

轻微

正常

正常

正常

正常

正常

正常

Fig.7

Measure of thinning ratio at risk of crack"

Table 5

Analysis of orthogonal experiment result of maximum of mechanical thinning"

参数影响因素
ABC

Mi1

Mi2

Mi3

mi1

mi2

mi3

R

0.759

0.865

0.956

0.253

0.288

0.319

0.066

0.840

0.860

0.880

0.280

0.289

0.293

0.013

0.860

0.860

0.860

0.000

0.000

0.000

0.000

各因素影响度A>B>C

Fig.8

Simulation result of most optimal A2B2C3"

Fig.9

Springback compensation of dieface"

Fig.10

Evolution of spingback numeric with compensation coefficient"

Fig.11

Forming experiment"

Fig.12

Product of experiment experiment"

Fig.13

Detection of contour accuracy for reinforcement plate"

1 姚明哲, 杨志勇, 马秋红, 等. 不锈钢轨道车辆的特点[J]. 装备机械, 2015, 48(3): 10-13.
Yao Ming-zhe, Yang Zhi-yong, Ma Qiu-hong, et al. Features of railway vehicles of stainless steel[J]. The Magazine on Equipment Machine, 2015, 48(3): 10-13.
2 张海波, 孙力伟, 温勃. 基于Autoform车顶盖板拉深成形数值模拟研究[J]. 现代制造工程, 2017(10): 85-89, 58.
Zhang Hai-bo, Sun Li-wei, Wen Bo. Numerical simulation research on the drawing forming of the roof cover plate based on autoform[J]. Modern Manufacturing Engineering, 2017(10): 85-89, 58.
3 邱晓刚, 黄跃东. 汽车顶盖零件冲压成形的数值模拟研究[J]. 锻压技术, 2009, 34(4): 148-152.
Qiu Xiao-gang, Huang Yue-dong. Study on numericalsimulation of automobile covering part stamping process[J]. Forging & Stamping Technology, 2009, 34(4): 148-152.
4 Souza T, Rolfe B. Multivariate modelling of variabi-lity in sheet metal forming[J]. Journal of Materials Processing Technology, 2008, 203(1-3): 1-12.
5 Xu F, Lin Z Q, Li S H, et al. Study on the influences of geometrical parameters on the formability of stretch curved flanging by numerical simulation[J]. Journal of Materials Processing Technology, 2004, 145(1): 93-98.
6 Dezelak M, Stepisnik A, Pahole L, et al. Evaluation of twistspringback prediction after an AHSS forming process[J]. International Journal of Simulation Modelling, 2014, 13(2): 171-182.
7 陶晨, 王双. 基于Autoform的汽车发动机罩板拉延成形仿真研究[J]. 农业装备与车辆工程, 2018, 56(2): 69-72.
Tao Chen, Wang Shuang. Autoform-based simulation study of automobile engine hood drawing process[J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(2): 69-72.
8 李欣, 孙延朋, 王丹, 等. 汽车前地板成形有限元数值模拟[J]. 吉林大学学报: 工学版, 2019, 49(5): 1608-1614.
Li Xin, Sun Yan-peng, Wang Dan, et al. Finite element numerical simulation for automobile front floor forming[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1608-1614.
9 蔡中义, 李明哲, 兰英武, 等. 三维曲面零件连续成形的形状控制[J]. 吉林大学学报: 工学版, 2011, 41(4): 978-983.
Cai Zhong-yi, Li Ming-zhe, Lan Ying-wu, et al. Shape control of 3-dimensional curved surface part in continuous forming[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(4): 978-983.
10 刘志卫, 李明哲, 韩奇钢. 具有防皱功能的多点成形工艺数值模拟[J]. 吉林大学学报: 工学版, 2012, 42(5): 1208-1213.
Liu Zhi-wei, Li Ming-zhe, Han Qi-gang. Numerical simulation on multi-point sheet metal forming with wrinkle resistance function[J]. Journal of Jinlin University (Engineering and Technology Edition), 2012, 42(5): 1208-1213.
[1] Xin CHEN,Ning WANG,Chuan-liang SHEN,Xiao FENG,Chang-hai YANG. Effect of rearview mirror modeling on aerodynamic noise of front window [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 426-436.
[2] Zhou SHI,Shu-qing KOU. Performance analysis and lightweight design of 36MnVS4 fracturesplitting connecting rod [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1992-2001.
[3] Wei-ping SHI,Xu ZHAO,Xing-jun HU,Tian-ming YU,Bo-wen LIU,Yan DUAN. Design and numerical simulation of water restriction device AICD for natural gas exploitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1986-1991.
[4] Ya-feng GONG,Bo WANG,Guo-jin TAN,Li-min ZHANG,Wen-ding WU,Hai-peng BI. Comparative analysis of mechanical characteristics of two typical fabricated culverts in Jilin [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1865-1870.
[5] Yong PENG,Hua GAO,Lei WAN,Gui-ying LIU. Numerical simulation of influence factors of splitting strength of asphalt mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1521-1530.
[6] Zhuo YI,Wen-zhi FU,Ming-zhe LI. Numerical simulation and experiment on double⁃layered split ultrahigh pressure die [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1593-1599.
[7] Xin LI,Yan-peng SUN,Dan WANG,Jun-xu CHEN,Zheng-wei GU,Hong XU. Finite element numerical simulation for automobile front floor forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1608-1614.
[8] Hua ZHOU,Zhi⁃gang YANG,Hui ZHU. Aerodynamic calculation of MIRA model correlated with wind tunnel test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1043-1053.
[9] Xin LI,Dan WANG,Jun⁃xu CHEN,Yan⁃peng SUN,Zheng⁃wei GU,Hong XU. Numerical simulation for handbrake fixed plate forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1258-1265.
[10] Xue⁃guang ZHANG,Ming⁃meng JIA,Chun⁃guo LIU,Guang⁃zhong HE. Trajectory design and FE simulation for profile stretch bending based on incremental control method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1272-1279.
[11] Zhao⁃wei QU,Zhao⁃tian PAN,Yong⁃heng CHEN,Peng⁃fei TAO,Di SUN. Car⁃following model with improving safety distance based on optimal velocity model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1092-1099.
[12] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[13] GONG Ya-feng, WANG Bo, WEI Hai-bin, HE Zi-heng, HE Yu-long, SHEN Yang-fan. Surface subsidence law of double-line shield tunnel based on Peck formula [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1411-1417.
[14] KOU Shu-qing, SHI Zhou. Three-dimensional reconstruction of fracture-split connecting rod joint surface and its strength and stiffness [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1515-1523.
[15] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!