Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2295-2303.doi: 10.13229/j.cnki.jdxbgxb20200680

Previous Articles    

Adaptive fuzzy fractional⁃order sliding mode precise motion control of permanent magnet linear synchronous motor

Dong-hui WEI1(),Ai-ting WANG1,Jing-hong JI2,Jun-long FANG1()   

  1. 1.College of Electrical and Information,Northeast Agricultural University,Harbin 150030,China
    2.Harbin Huade College,Harbin 150025,China
  • Received:2020-09-04 Online:2021-11-01 Published:2021-11-15
  • Contact: Jun-long FANG E-mail:weidonghui@neau.edu.cn;junlongfang@126.com

Abstract:

In order to solve the problem that the uncertainty in the servo system of Permanent Magnet Linear Synchronous Motor (PMLSM) affects the servo accuracy, an Adaptive Fuzzy Fractional Order Sliding Mode Control (AFFOSMC) method was proposed to ensure that the actuator position of the PMLSM follows the given position precisely. Firstly, the mathematical model of PMLSM with the uncertainty of parameter change and external disturbance was established. Then, Fractional Order Sliding Mode Control (FOSMC) was designed to ensure the robustness of the system. Because it was difficult to determine the switching control gain of FOSMC in application, AFFOSMC was used to estimate the uncertainty of the system. At the same time, an Adaptive Fuzzy Reaching Regulator (AFRR) was designed to compensate the estimation error of AFFOSMC. Therefore, the chattering can be further weakened and the performance can be improved without the uncertain boundary information. Finally, experiments show that the proposed AFFOSMC method can effectively reduce the impact of parameter changes and external disturbances on the system, improve the robust control performance and accurate tracking response of the system.

Key words: permanent magnet linear synchronous motor, fractional-order, fuzzy control, sliding mode control

CLC Number: 

  • TM351

Fig.1

Overall block diagram of PMLSM controlsystem based on AFFOSMC"

Fig.2

Block diagram of FOSMC"

Fig.3

Gaussian membership function"

Fig.4

Block diagram of PMLSM control systembased on AFFOSMC"

Fig.5

Platform of PMLSM control system"

Table 1

Main parameters of PMLSM"

参 数数值
定子电阻/Ω3
dq轴电感/mH31
极对数2
黏性摩擦因数/(N·s·m-10.4
动子质量/kg1.2

Fig.6

Experimental curves of FOSMC undernominal condition"

Fig.7

Experimental curves of AFFOSMC undernominal condition"

Fig.8

Curve of load variation"

Fig.9

Position tracking error curves underload variation"

Fig.10

Experimental curves of FOSMCunder sinusoidal signal"

Fig.11

Experimental curves of FOSMC-RBFNNunder sinusoidal signal"

Fig.12

Experimental curves of AFFOSMCunder sinusoidal signal"

1 李金子, 肖炯然, 潘剑飞. 多永磁同步直线电机协同控制研究[J]. 吉林大学学报:信息科学版, 2019, 37(1):32-39.
Li Jin-zi, Xiao Jiong-ran, Pan Jian-fei. Research on cooperative control of Mmulti-PMSM linear Mmotors[J]. Journal of Jilin University(Information Science Edition), 2019, 37(1): 32-39.
2 赵健, 邓志辉, 朱冰,等. 面向电子机械助力制动的永磁同步电机位置伺服控制[J]. 吉林大学学报:工学版, 2020, 50(3):834-841.
Zhao Jian, Deng Zhi-hui, Zhu Bing, et al. Position servo control of permanent magnet synchronous motor for electro⁃mechanical brake booster[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 834-841.
3 Li L Y, Guo Q B, Liu J X, et al. Design and implementation of a high-performance PMLSM control system with deadbeat current control and SMC[J]. Applied Mechanics & Materials, 2013, 2689: 692-697.
4 Zhang Y M, Yan P. An adaptive integral sliding mode control approach for piezoelectric nano-manipulation with optimal transient performance[J]. Mechatronics, 2018, 52: 119-126.
5 王坤, 王建美, 王芳, 等. 非匹配不确定系统的滑模控制及在电机控制中的应用[J]. 控制理论与应用, 2019,36(1): 143-150.
Wang Kun, Wang Jian-mei, Wang Fang, et al. Sliding mode control for nonlinear system with mismatched uncertainties and application in motor control[J]. Control Theory & Applications, 2019, 36(1): 143-150.
6 王春风, 赵青青, 孟旭,等. 直流电机的非奇异快速Terminal滑模位置控制[J]. 哈尔滨理工大学学报, 2019, 24(4): 36-41.
Wang Chun-feng, Zhao Qing-qing, Meng Xu, et al. Non-singular fast Terminal sliding mode position control for DC motor[J]. Journal of Harbin University of Science and Technology, 2019, 24(4): 36-41.
7 侯利民, 王巍. 表面式永磁同步电机无源非奇异快速终端滑模控制[J]. 电工技术学报, 2014, 29(11):45-52.
Hou Li-min, Wang Wei. Passivity-based control and nonsingular mode control for SPMSM[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 45-52.
8 Maddahi A, Sepehri N, Kinsner W. Fractional-order control of hydraulically powered actuators: controller design and experimental validation[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(2):796-807.
9 Ullah N, Wang Shao-ping, Khattak M I, et al. Fractional order adaptive fuzzy sliding mode controller for a position servo system subjected to aerodynamic loading and nonlinearities[J]. Aerospace Science and Technology, 2015, 43: 381-387.
10 Ebrahimkhani S. Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines[J]. ISA Transactions, 2016, 63: 343-354.
11 党选举, 徐小平, 于晓明, 等.永磁同步直线电机的小波神经网络控制[J]. 电机与控制学报, 2013, 17(1):43-50.
Dang Xuan-ju, Xu Xiao-ping, Yu Xiao-ming, et al. Control for PMLSM based on wavelet neural network[J]. Electric Machines and Control, 2013, 17(1):43-50.
12 Ting C S, Lieu J F, Liu C S, et al. An adaptive FNN control design of PMLSM in stationary reference frame[J]. Journal of Control Automation & Electrical Systems, 2016, 27(4):391-405.
13 王香, 张永林. 基于RBF神经网络的AUV路径跟踪分数阶滑模控制[J]. 水下无人系统学报, 2020, 28(3):284-290.
Wang Xiang, Zhang Yong-lin. Fractional-order sliding mode control based on RBF neural network for AUV path tracking [J]. Journal of Unmanned Undersea Systems, 2020, 28(3):284-290.
[1] Yong LUO,Yong-heng WEI,Huan HUANG,Ren-jie XIAO,Lin REN,Huan-yu CUI. Starting control of P2.5 plug⁃in hybrid configuration dual⁃clutch based on driver's intention recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1575-1582.
[2] Jiang-qi LONG,Jin-tao XIANG,Ping YU,Jun-cheng WANG. Linear disturbance observer suitable for sliding mode control of nonlinear active suspension [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1230-1240.
[3] Jia-xu ZHANG,Xin-zhi WANG,Jian ZHAO,Zheng-tang SHI. Path planning and discrete sliding mode tracking control for high⁃speed lane changing collision avoidance of vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1081-1090.
[4] Liang CHU,Li-jia DONG,Nan XU,Li-feng ZHANG,Yi-fan JIA,Zhi-hua YANG. Powertrain configuration and power distribution of extended electric vehicle based on open winding motor [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 72-82.
[5] Jing LI,Qiu-jun SHI,Liang HONG,Peng LIU. Commercial vehicle ESC neural network sliding mode control based on vehicle state estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1545-1555.
[6] Ai-guo WU,Jun-qing HAN,Na DONG. Adaptive sliding mode control based on ultra⁃local model for robotic manipulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1905-1912.
[7] Wei WANG,Jian-ting ZHAO,Kuan-rong HU,Yong-cang GUO. Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 464-471.
[8] Shou⁃tao LI,Qiu⁃yuan LI,Hui LIU,Hui DING,Yan⁃tao TIAN,Ding⁃li YU. Sliding mode variable structure strategy for vehicle stability control [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1288-1292.
[9] Jing LI,Qiu⁃jun SHI,Peng LIU,Ya⁃wei HU. Neural network sliding mode control of commercial vehicle ABS based on longitudinal vehicle speed estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1017-1025.
[10] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[11] WANG Wei, WANG Qing-nian, TIAN Yong-jun, WANG Ren-guang, WEN Quan. Control strategy for compound power slit hybrid electric bus based on fuzzy control [J]. 吉林大学学报(工学版), 2017, 47(2): 337-343.
[12] LI Bing-qiang, CHEN Xiao-lei, LIN Hui, LYU Shuai-shuai, MA Dong-qi. High precision adaptive backstepping sliding mode control for electromechanical servo system [J]. 吉林大学学报(工学版), 2016, 46(6): 2003-2009.
[13] CAO Fu-cheng, XING Xiao-xue, LI Yuan-chun, ZHAO Xi-lu. Adaptive trajectory sliding mode impedance control for lower limb rehabilitation robot [J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608.
[14] ZHANG Peng, LIU Xiao-song, DONG Bo, LIU Ke-ping, LI Yuan-chun. Adaptive supper-twisting control for spacecraft soft landing on asteroids [J]. 吉林大学学报(工学版), 2016, 46(5): 1609-1615.
[15] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!