Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2746-2755.doi: 10.13229/j.cnki.jdxbgxb20210377

Previous Articles    

Optimization and experiment of operation parameters of hilly area flax combine harvester

Rui-jie SHI1(),Fei DAI1,Wu-yun ZHAO1(),Xiao-long LIU1,Jiang-fei QU2,Feng-wei ZHANG1   

  1. 1.College of Mechanical and Electrical Engineering,Gansu Agricultural University,Lanzhou 730070,China
    2.Teacher and Cadre Development Center,Lanzhou College of Information Science and Technology,Lanzhou 730300,China
  • Received:2021-04-26 Online:2022-11-01 Published:2022-11-16
  • Contact: Wu-yun ZHAO E-mail:aete_fcb@163.com;zhaowy@gsau.edu.cn

Abstract:

In order to improve the working efficiency of the flax combine harvester in hilly areas, this study took the forward speed of the working machine, the rotating speed of threshing drum and the rotating speed of impurity suction fan as independent variables, and the threshing rate, the total loss rate and the impurity content rate of grains as response values. According to the Box-Behnken experimental design principle, the mathematical models between each factor and the response values were established by using the response surface analysis method of three factors and three levels, and the interaction of each factor was analyzed. The results showed that the order of impact of the threshing rate was the speed of the threshing cylinder, advanced machine, and centrifugal fan. The order of effects of the total loss rate was the speed of the developed device, centrifugal fan, and threshing cylinder, and the order of impact on the impurity rate was the speed of the centrifugal fan threshing cylinder and advanced machine. The optimal working parameters of the device were as follows: the advance speed of 0.65 m/s, the threshing cylinder speed of 830.3 r/min, and the centrifugal fan speed of 1154.39 r/min. The validation test showed that the average threshing rate was 96.33%, the total loss rate was 1.87%, and the impurity rate was 3.24%. The results show that the total loss and seed impurity rate of hilly area flax combine harvester could be reduced under the operation parameters, which could provide a specific reference for the design and experiment of hilly area flax combine harvester.

Key words: agricultural machinery, combine harvester, flax, hilly area, parameter optimization

CLC Number: 

  • S225.31

Fig.1

Structure diagram of hilly area flax combine harvester"

Table 1

Technical parameters of hilly area flax combine harvester"

参 数
整机尺寸(长×宽×高)/mm×mm×mm3100×1450×1500
喂入量/(kg?s-10.9
作业速度/(m?s-10.4~0.7
额定功率/kW13.4
额定转速/(r?min-13600
输送链扒类型链耙式
滚筒参数(外径×长度)/(mm×mm)430×950
履带节距×节数×宽/(mm×节×mm)79×34×330
履带轨距/mm700
割台幅宽/mm1000
离地间隙/mm≥235
生产率/(hm2?h-10.07~0.10

Fig.2

Field test"

Fig.3

Influence of forward speed, threshing drum speed and suction fan speed on each performance indicator"

Fig.4

Discrete element model of flax grain and compression process and curve of flax grain under different speed of threshing drum"

Fig.5

CFD analysis model of cleaning system and contour cloud of X-Y section velocity of cyclone separator at different speeds of suction fan"

Table 2

Factors and levels of tests"

编码因 素
前进速度x1/(m·s-1脱粒滚筒转速x2/(r·min-1吸杂风机转速x3/(r·min-1
-10.47700800
00.569001100
10.6611001400

Table 3

Results of response surface analysis"

试验号X1X2X3Y1/%Y2/%Y3/%
10-1187.466.883.79
210-193.880.927.75
300096.034.064.11
401199.558.331.23
500096.464.063.98
611099.232.082.91
710198.533.432.86
801-196.514.096.21
9-1-1086.746.554.65
100-1-186.874.098.61
1100096.924.064.09
12-10192.199.322.26
13-12-194.186.057.12
141-1088.681.345.25
1500096.984.664.01
16-11097.017.422.48
1700096.594.064.11

Table 4

Variance analysis of regression equation"

试验指标变异来源平方和自由度均方FP
脱净率模型303.03933.67187.91<0.0001**
X113.01113.0172.58<0.0001**
X2226.311226.311263.06<0.0001**
X34.9514.9527.60.0012**
X1X20.0210.020.110.7505
X1X311.02111.0261.520.0001**
X2X31.511.58.380.0232*
X122.6412.6414.730.0064*
X2235.15135.15196.17<0.0001**
X325.1815.1828.910.0010*
残差1.2570.18
失拟0.6630.221.490.3440
误差0.5940.15
总和304.2816
总损失率模型87.7199.75132.69<0.0001**
X158.16158.16791.84<0.0001**
X21.1711.1715.940.0052**
X320.51120.51279.28<0.0001**
X1X24.2×10-314.2×10-40.0580.8173
X1X30.1410.141.970.2036
X2X30.5310.537.160.0318*
X120.5910.598.060.0251*
X221.2411.2416.870.0045**
X325.3315.3372.56<0.0001**
残差0.5170.073
失拟0.2330.0751.050.4632
误差0.2940.072
总和88.2216
籽粒含杂率模型64.2197.131099.41<0.0001**
X10.6410.6498.39<0.0001**
X211.21111.211727.48<0.0001**
X347.78147.787362.18<0.0001**
X1X27.2×10-317.2×10-31.110.3264
X1X32.2×10-412.2×10-40.0350.8576
X2X36.4×10-416.4×10-40.990.3575
X120.04210.0426.490.0383*
X220.0810.0812.270.0100*
X324.5314.53698.42<0.0001**
残差0.04576.4×10-3
失拟0.03130.012.760.1759
误差0.01543.7×10-3
总和64.2516

Fig.6

Influence of interaction factors on threshing rate"

Fig.7

Influence of interaction factors on total loss rate"

Fig.8

Influence of interaction factors on impurity rate"

Table 5

Optimal working parameters and job results set"

试验指标标准值试验结果
脱净率/%≥9596.33
总损失率/%≤51.87
籽粒含杂率/%≤53.24
1 祁旭升,王兴荣,许军,等.胡麻种质资源成株期抗旱性评价[J].中国农业科学, 2010, 43(15): 3076-3087.
Qi Xu-sheng, Wang Xing-rong, Xu Jun . et al. Drought-resistance evaluation of flax germplasm at adult plant stage[J]. Scientia Agricultura Sinica, 2010, 43(15): 3076-3087.
2 罗俊杰, 欧巧明, 叶春雷, 等. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(7): 1259-1273.
Luo Jun-jie, Qiao-ming Ou, Ye Chun-lei, et al. Comprehensive valuation of drought resistance and screening of indices of important flax cultivars[J]. Acta Agronomica Sinica, 2014, 40(7): 1259-1273.
3 史瑞杰, 戴飞, 赵武云, 等. 全喂入式胡麻脱粒机的设计与试验[J]. 中国农业大学学报, 2019, 24(8): 120-132.
Shi Rui-jie, Dai Fei, Zhao Wu-yun, et al. Design and test of full-feed flax thresher[J]. Journal of China Agricultural University, 2019, 24(8): 120-132.
5 刘元祥, 戴飞, 赵武云, 等. 手扶式胡麻割晒机的设计与试验[J].中国农机化学报, 2019, 40(12): 26-29.
Liu Yuan-xiang, Dai Fei, Zhao Wu-yun, et al. Design and experiment of handheld flax windrower[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 26-29.
6 孙仕明, 孙文峰, 吕海杰. 我国亚麻生产机械化现状及发展建议[J]. 农机化研究, 2004(4): 23-24.
Sun Shi-ming, Sun Wen-feng, Lv Hai-jie. The present status and development suggestion on flax production mechanization in our country[J]. Journal of Agricultural Mechanization Research,2004(4): 23-24.
7 屈哲, 余泳昌, 何勋. 我国西南丘陵地区玉米收获机械化的研究探讨[J]. 现代农业装备, 2013(3): 26-29.
Qu Zhe, Yu Yong-chang, He Xun. Research and discuss about corn harvest mechanization in southwest hilly area of our country[J]. Modern Agricultural Equipment, 2013(3): 26-29.
8 戴飞, 赵武云, 刘国春, 等. 胡麻脱粒物料分离清选机设计与试验[J]. 农业机械学报, 2019, 50(8): 140-147.
Dai Fei, Zhao Wu-yun, Liu Guo-chun, et al. Design and experiment of separating and cleaning machine for flax threshing material[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 140-147.
9 戴飞, 赵武云, 宋学锋, 等. 胡麻脱粒物料分离清选作业机参数优化与试验[J]. 农业机械学报, 2020, 51(7): 100-108.
Dai Fei, Zhao Wu-yun, Song Xue-feng, et al. Parameters optimization and experiment on separating and cleaning materia machine for flax threshing material[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 100-108.
10 周刚, 石林榕, 赵武云, 等. 旱地胡麻起垄覆膜播种联合作业机工作参数优化与性能试验[J]. 中国农业大学学报, 2019, 24(6): 147-156.
Zhou Gang, Shi Lin-rong, Zhao Wu-yun, et al. Optimization of the working parameters and performance experiment of flax ridging and covering film combined seeder in dry-land[J]. Journal of China Agricultural University, 2019, 24(6): 147-156.
11 石林榕, 马周泰, 赵武云, 等. 胡麻籽粒离散元仿真参数标定与排种试验验证[J]. 农业工程学报, 2019, 35(20): 25-33.
Shi Lin-rong, Ma Zhou-tai, Zhao Wu-yun, et al. Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 25-33.
12 史瑞杰, 戴飞, 刘小龙, 等. 履带式丘陵山地胡麻联合收割机设计与试验[J]. 农业工程学报, 2021, 37(5): 59-67.
Shi Rui-jie, Dai Fei, Liu Xiao-long, et al. Design and experiments of crawler-type hilly area flax combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(5): 59-67.
13 史瑞杰, 戴飞, 赵武云, 等. 胡麻茎秆生物力学特性试验[J]. 中国农机化学报, 2018, 39(11): 45-50.
Shi Rui-jie, Dai Fei, Zhao Wu-yun, et al. Biomechanical properties test of flax stem[J]. Journal of Chinese Agricultural Mechanization,2018,39(11): 45-50.
14 .收获机械 联合收割机 试验方法 [S].
15 .脱粒机试验方法 [S].
16 .计数抽样检测程序 [S].
17 .农业机械试验条件 [S].
18 .谷物联合收割机 安全操作规程 [S].
19 Shamilah A M, Darius E P, Nor A A J. Actual field speed of rice combine harvester and its influence on grain loss in Malaysian paddy field[J]. Journal of the Saudi Society of Agricultural Sciences, 2020, 19(6): 422-425.
20 Chai X Y, Zhou Y, Xu L Z, et al. Effect of guide strips on the distribution of threshed outputs and cleaning losses for a tangential-longitudinal flow rice combine harvester[J]. Biosystems Engineering, 2020, 198: 223-234.
21 中国农业机械化科学研究院. 农业机械设计手册: 上册[M]. 北京: 中国农业科学技术出版社, 2007.
22 戴飞, 赵武云, 马明义, 等. 双垄耕作施肥喷药覆膜机工作参数优化[J]. 农业机械学报, 2016, 47(1):83-90.
Dai Fei, Zhao Wu-yun, Ma Ming-yi,et al. Parameters optimization of operation machine for tillage-fertilization and spraying filming on double ridges[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 83-90.
23 张仕林, 赵武云, 戴飞, 等. 全膜双垄沟起垄覆膜机镇压作业过程仿真分析与试验[J]. 农业工程学报, 2020, 36(1): 20-30.
Zhang Shi-lin, Zhao Wu-yun, Dai Fei, et al. Simulation analysis and test on suppression operation process of ridging and film covering machine with full-film double-furrow[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1):20-30.
24 金诚谦, 郭飞扬, 徐金山, 等. 大豆联合收获机作业参数优化[J]. 农业工程学报, 2019, 35(13): 10-22.
Jin Cheng-qian, Guo Fei-yang, Xu Jin-shan, et al. Optimization of working parameters of soybean combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 10-22.
25 王伯凯, 胡志超, 曹明珠, 等. 轴流式花生捡拾收获机设计与试验[J]. 农业机械学报, 2021, 52(1): 98, 109-118.
Wang Bo-kai, Hu Zhi-chao, Cao Ming-zhu, et al. Design and Test of axial-flow peanut picking and harvesting machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 98, 109-118.
26 黄继承, 沈成, 纪爱敏, 等. 工业大麻收割机切割-输送关键部件作业参数优化[J]. 吉林大学学报: 工学版, 2021, 51(2): 772-780.
Huang Ji-cheng, Shen Cheng, Ji Ai-min, et al. Optimization of cutting-conveying key working parameters of hemp harvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2):772-780.
27 薛钊, 付君, 陈志, 等. 青饲玉米收获机械切碎装置参数优化试验[J]. 吉林大学学报: 工学版, 2020, 50(2): 739-748.
Xue Zhao, Fu Jun, Chen Zhi, et al. Optimization experiment on parameters of chopping device of forage maize harvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2):739-748.
[1] Zhi-hui LI,Ya-qian SUN,Peng-fei TAO,Hai-tao LI,Xin LIU. Prediction method of traffic operation risk level after traffic accident [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 127-135.
[2] Duan-yang GENG,Xiao-dong MU,Guo-dong ZHANG,Zong-yuan WANG,Jun-ke ZHU,Hai-gang XU. Analysis and optimization of cleaning mechanism of wheat combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 219-230.
[3] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
[4] Bin ZHANG,Guo-zan CHENG,Hao-cen HONG,Chun-xiao ZHAO,Da-peng BAI,Hua-yong YANG. Structure optimization of triangular groove of valve plate in axial piston pump based on SVR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1213-1221.
[5] Ji-cheng HUANG,Cheng SHEN,Ai-min JI,Xian-wang LI,Bin ZHANG,Kun-peng TIAN,Hao-lu LIU. Optimization of cutting⁃conveying key working parameters of hemp harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 772-780.
[6] Xue-shen CHEN,Tao CHEN,Tao WU,Xu MA,Ling-chao ZENG,Lin-tao CHEN. Design and experiment on harvester for winter planting potato of straw coverage [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 749-757.
[7] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[8] LI Jing, DING Ming-hui, LI Li-gang, CHEN Li-jun. Dynamic characteristics analysis and optimization of air spring based on the piston shape [J]. 吉林大学学报(工学版), 2018, 48(2): 355-363.
[9] MA Kai, GAO Ji-dong, YAN Lei, XU Tao. Dummy material parameter optimization based on calibration experiment of chest pressure in collision [J]. 吉林大学学报(工学版), 2017, 47(5): 1498-1503.
[10] HUANG Xuan, GUO Li-hong, LI Jiang, YU Yang. Target threat assessment based on BP neural network optimized by modified particle swarm optimization [J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[11] WANG Qing-nian, WANG Guang-ping, WANG Peng-yu, HAN Biao, LI Feng. Parameter matching for plug-in hybrid electric vehicle based on cost optimization [J]. 吉林大学学报(工学版), 2016, 46(2): 340-347.
[12] LIU Yun, LIU Fu, HOU Tao, ZHANG Xiao. Kernel-based fuzzy C-means clustering method based on parameter optimization [J]. 吉林大学学报(工学版), 2016, 46(1): 246-251.
[13] SONG Xue-wei, WU Yong-fei, SHEN Chuan-liang, CHEN Shu-ming. Test optimum design in three-way pipe hydroforming load path optimization [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 57-61.
[14] HAN Bao,WU Wen-fu,QUAN Long-zhe. Multi-objective optimization design and simulation on horizontal disk type weeding unit between seedlings [J]. 吉林大学学报(工学版), 2011, 41(03): 692-696.
[15] LIU Shun-An, HU Qing-Yu. IPSO algorithm for optimization of shock absorber [J]. 吉林大学学报(工学版), 2010, 40(02): 341-0345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!