Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (1): 170-177.doi: 10.13229/j.cnki.jdxbgxb20210559

Previous Articles    

Axial compression performance of thin⁃walled concrete⁃filled square steel tube short columns confined by stirrup

Jun CHEN(),Jia-gui NI,Zhe LIU,Wen-bo MA,Xu-hua DENG()   

  1. College of Civil Engineering and Mechanics,Xiangtan University,Xiangtan 411105,China
  • Received:2021-06-21 Online:2023-01-01 Published:2023-07-23
  • Contact: Xu-hua DENG E-mail:chenjun0325@126.com;903074106@qq.com

Abstract:

Through the axial compression test of the thin-walled concrete-filled square steel tube short column confined by the stirrup, the effects of the concrete strength, the volumetric stirrup ratio of the stirrup and the connection mode of the stirrup and the steel pipe wall on the ultimate bearing capacity, stiffness, ductility and transverse deformation coefficient of the specimen are studied. The research results show that the built-in reinforcement can help to improve the ultimate bearing capacity and ductility of the specimen. This improvement effect decreases with the increase of concrete strength, and increases with the increase of the volumetric stirrup ratio of the stirrup. After the stirrup is welded to the steel pipe wall, the mechanical properties of the test piece have not changed significantly. The ultimate strength theory is used to mechanically analyze the specimens in the ultimate state, and the formula for calculating the ultimate bearing capacity of the concrete-filled square steel tube short columns constrained by stirrup is deduced, and combined with the test data of similar specimens in other documents to verify the formula, which proves the correctness of the formula.

Key words: concrete-filled steel tube, high-strength steel, stirrup confined, calculation formula, thin-walled steel tube

CLC Number: 

  • TU398

Fig.1

Specimen diagram"

Table 1

Properties and results of specimen"

试件编号拉筋间距ρs/%ρv/%ρa/%fy/MPafv/MPaNu/kN提高比/%
S60?0?0/4.9//735.1464.26015/
S60?4?Z@2104.91.060.67735.1464.262754.3
S60?4?H@2104.91.060.67735.1464.263796.0
S60?8?Z@904.92.121.34735.1464.2688514.5
S60?8?H@904.92.121.34735.1464.2699116.2
S80?0?0/4.9//735.1464.26684/
S80?4?Z@2104.91.060.67735.1464.273269.6
S80?4?H@2104.91.060.67735.1464.268602.6
S80?8?Z@904.92.121.34735.1464.2740210.7
S80?8?H@904.92.121.34735.1464.2737510.3

Fig.2

Test loading process"

Fig.3

Loading device and measuring point layout"

Table 2

Concrete ratio and measured strength"

强度

等级

水/

(kg·m-3

水泥/

(kg·m-3

硅灰/

(kg·m-3

粉煤灰/

(kg·m-3

砂/

(kg·m-3

石/

(kg·m-3

减水剂/

(kg·m-3

水胶比

W/C

fcu/

MPa

C60153.22483.5253.72/647.01055.64.30.2971.2
C80139.10541.7054.1754.17610.7996.36.50.2281.9

Fig.4

Typical failure patterns of specimens"

Fig.5

Ultimate bearing capacity diagram"

Fig.6

Specimen load-longitudinal strain curve"

Fig.7

Specimen load-strain curve"

Fig.8

Specimen load-transverse deformation coefficient curve"

Fig.9

Schematic diagram of force of core concrete confined by stirrup"

Table 3

Comparison of test value of test piece bearing capacity with calculated value of formula"

数据

来源

试件

编号

fcu/

MPa

Pv/

%

α/

%

fy/

MPa

fv/

MPa

Nu/

kN

Nt1/

kN

Nt2/

kN

Nt1/NuNt2/Nu
本文S60?0?071.204.9735.1/6015603559881.001.00
S60?4?Z71.21.064.9735.14646275644967661.031.08
S60?4?H71.21.064.9735.14646379644967661.011.06
S60?8?Z71.22.124.9735.14646885700274351.021.08
S60?8?H71.22.124.9735.14646991700274351.001.06
S80?0?081.904.9735.1/6684664766000.990.99
S80?4?Z81.91.064.9735.14647326706273790.961.01
S80?4?H81.91.064.9735.14646860706273791.031.08
S80?8?Z81.92.124.9735.14647402761480481.031.09
S80?8?H81.92.124.9735.14647375761480481.031.09
文献[14B1?a38.5/4.6253.3/5061507150401.001.00
B1?b38.5/4.6253.3/4927507150401.031.02
B238.50.724.6253.314205450531875600.981.39
B338.50.964.6253.314205658544683180.961.47
B438.51.444.6253.314205869584998141.001.67
文献[16B4?a62.80.8245.13003121913417001164120.8890.99
B4?b62.81.1865.13002981941117299164120.8910.99
B562.8/5.9280/1794017413180280.9710.94
1 李斌,郭世壮,高春彦.带肋薄壁方钢管混凝土短柱轴压力学性能试验研究[J].混凝土,2018(3):53-55, 59.
Li Bin, Guo Shi-zhuang, Gao Chun-yan. Experimental research on mechanics behavior of stub-column concrete-filled thin-walled stiffened square steel tube under axial load[J]. Concrete, 2018(3): 53-55, 59.
2 张信龙,陈勇,刘庆东,等.配筋方钢管混凝土短柱受压试验和承载力计算[J].混凝土,2020(12):11-14, 20.
Zhang Xin-long, Chen Yong, Liu Qing-dong, et al. Axial compression test and calculation of bar-reinforced concrete filled square steel tubular stub column[J]. Concrete, 2020(12):11-14, 20.
3 万城勇,查晓雄.配筋钢管混凝土轴压短柱受力性能试验研究[J].建筑结构学报,2013,34():259-266.
Wan Cheng-yong, Zha Xiao-xiong. Experiment study of reinforced concrete filled steel tubular columns subjected to axial compression[J]. Journal of Building Structures, 2013,34(Sup.1):259-266.
4 Wang Qing-xiang, Zhao Da-zhou, Guan Ping. Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete[J]. Engineering Structures,2004,26(7):907-915.
5 Ding Fa-xing, Zhu Jiang, Cheng Shan-shan, et al. Comparative study of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading[J]. Thin-walled Structures,2018,123:294-304.
6 Ding Fa-xing, Lu De-ren, Bai Yu, et al. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading[J]. Thin-walled Structures,2016,98:443-453.
7 朱江,丁发兴,王莉萍.带拉筋圆钢管混凝土轴压短柱受力性能研究[J].建筑结构学报,2017,38():285-290.
Zhu Jiang, Ding Fa-xing, Wang Li-ping. Mechanical behavior of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading[J]. Journal of Building Structures, 2017,38(Sup.1):285-290.
8 饶玉龙,张继承,李勇,等.高强冷弯矩形钢管混凝土短柱轴压承载力试验[J].华侨大学学报:自然科学版,2019,40(3):338-343.
Rao Yu-long, Zhang Ji-cheng, Li Yong, et al. Experiment on mechanical behavior of concrete-filled high-strength cold-formed steel tube short column under axial load[J]. Journal of Huaqiao University (Natural Science),2019,40(3):338-343.
9 丁发兴,刘怡岑,吕飞,等.拉筋接触方式对高轴压比大尺寸钢管混凝土柱滞回性能影响试验研究[J]. 建筑结构学报,2021,42(9):62-72.
Ding Fa-xing, Liu Yi-cen, Lv Fei, et al. Pseudo-static tests of stirrup-confined concrete-filled steel tube columns under high axial pressure: the influence of contact mode between stirrup and steel tube[J]. Journal of Building Structures,2021,42(9):62-72.
10 丁发兴,付磊,龚永智,等.方钢管混凝土轴压短柱的力学性能研究[J].深圳大学学报:理工版,2014,31(6):583-592.
Ding Fa-xing, Fu Lei, Gong Yong-zhi, et al. Behavior of concrete-filled square steel tubular stub columns under axially compressive loading[J]. Journal of Shenzhen University Science and Engineering, 2014,31(6):583-592.
11 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2007.
12 韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31.
Han Lin-hai, Yang You-fu. Study on axial bearing capacity of concrete filled steel tube columns with rectangular section[J]. China Civil Engineering Journal, 2001,34(4): 22-31.
13 ACI 318―14. Building code requirements for structural concrete and commentary [S].
14 熊公玉,熊明祥.高强钢丝网片增强矩形钢管混凝土短柱轴压力学性能研究[J]. 广东建材,2019,35(2):56-60, 19.
Xiong Gong-yu, Xiong Ming-xiang. Study on axial pressure performance of rectangular steel tube concrete short column reinforced by high-strength steel mesh sheet[J]. Guangdong Building Materials, 2019,35(2): 56-60, 19.
15 Lu De-ren, Wang Wen-jun, Ding Fa-xing, et al. The impact of stirrups on the composite action of concrete-filled steel tubular stub columns under axial loading[J]. Structures, 2021(30):756-802.
16 Ding Fa-xing, Lu De-ren, Bai Yu, et al. Comparative study of square stirrup-confined concrete-filled steel tubular stub columns under axial loading[J]. Thin-walled Structures, 2016(98):443-453.
[1] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[2] Yi-hong WANG,Qiao-luo TIAN,Guan-qi LAN,Sheng-fa YAO,Jian-xiong ZHANG,Xi LIU. Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2626-2635.
[3] Jing ZHOU,Ya-jun LI,Wei-feng ZHAO,Zong-jian LUO,Guo-bin BU. Eccentric compression behavior of bamboo⁃plywood and steel⁃tube dual⁃confined dust⁃powder concrete columns [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2096-2107.
[4] De-lei YANG,Le-wei TONG. Calculation formula of SCF for CHS⁃CFSHS welded T⁃joints with brace under axial tension [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1891-1899.
[5] ZHUNG Wei-min, ZHAO Wen-zeng, XIE Dong-xuan, LI Bing. Joint performance analysis on connection of ultrahigh-strength steel and aluminum alloy with hot riveting [J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[6] ZHUANG Wei-min, XIE Dong-xuan, YU Tian-ming, YU Wan-dong. Numerical simulation of hot forming of high-strength steel based on damage-phase transformation constitutive model [J]. 吉林大学学报(工学版), 2015, 45(4): 1206-1212.
[7] MIAO Hong, ZUO Dun-wen, WANG Min, ZHANG Rui-hong, WANG Hong-feng. Effect of technological parameters on quality of Q460 high-strength-steel internal thread formed by cold extrusion [J]. 吉林大学学报(工学版), 2012, 42(01): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!