吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (01): 256-260.

Previous Articles     Next Articles

Special object recognition based on sparse representation

ZHA Chang-jun1,2, SUN Nan3, ZHANG Cheng1, WEI Sui1   

  1. 1. Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, Anhui University, Hefei 230039, China;
    2. Key Laboratory of Machine Vision and Intelligence Control Technology, Hefei University, Hefei 230601, China;
    3. Troops 73101 of PLA, Xuzhou 221008, China
  • Received:2012-06-04 Online:2013-01-01 Published:2013-01-01

Abstract: According to the output signal characteristics of the profile detecting system, special object recognition method based on sparse representation, combined with the theory of sparse representation and principal component analysis, is proposed. First, using principal component analysis, the method extracts the main components of the sample signal in order to eliminate redundant information. Second, the signal is transformed into the same size of the feature vectors, which is then projected to the lower dimensional space to construct a dictionary. Finally, the testing samples are sparsely represented and recognized by the dictionary. Numerical simulations and experiments show that the proposed method has good classification effect in lower dimensional space, and good robustness for the system with some damage sensors in the actual situation.

Key words: information processing, sparse representation, profiling recognition, feature extraction

CLC Number: 

  • TN911.74
[1] Russomanno David J, Chari Srikan, Emmanuel Kenny, et al. Testing and evaluation of profiling sensors for perimeter security[J]. ITEA, 2010,31(1):121-130.

[2] Sartain Ronald B, Aliberti Keith, Alexander Troy, et al. Long-wave infrared profile feature extractor (PFx) sensor[J]. Proc of SPIE, 2009,7333(11):1-7.

[3] Hastie Trevor, Tibshirani Robert, Friedman Jerome. The Elements of Statistical Learning[M]. New York: Springer-Verlag, 2001:14-18.

[4] Chari Srikant, Halford Carl, Jacobs Eddie,et al. Classification of humans and animals using an infrared profiling sensor[J]. Proc of SPIE, 2009,7333(10):1-9.

[5] Russomanno David, Chari Srikan, Halford Carl. Sparse detector imaging sensor with two-class silhouette classification[J]. Sensors, 2008(8):7996-8015.

[6] Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1):129-159.

[7] Li Yu-long, Feng Ju-fu. Sparse represention shape model//Proceedings of 2010 IEEE 17th ICIP, 2010:2733-2736.

[8] Estabridis Katia. Automatic target recognition via sparse representations[J]. Proc of SPIE, 2010,7696(O):1-9.

[9] Aharon M, Eald M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations[J]. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.

[10] Wright John, Yang Allen Y, Ganesh Arvind, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on PAMI, 2009, 31(2):1-18.

[11] Chen S B, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal on Scientific Computing,1998,20(1):33-61.

[12] Donoho D L, Elad M, Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006,52(1):6-18.

[13] Rubinstein R, Bruckstein A M, Elad M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE, 2010, 98(6): 1045-1057.

[14] Yeasin M, Russomanno D J, Sorower S M, et al. Robust classification of objects using a sparse detector sensor//Proceedings of the International Conference on Artificial Intelligence, 2008:742-748.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[7] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[8] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[9] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[10] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[11] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[12] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[13] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[14] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[15] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!