吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 874-881.doi: 10.13229/j.cnki.jdxbgxb201403047

• Orignal Article • Previous Articles     Next Articles

Mining and applying unmatched minutiae information in fingerprint recognition

LI Tian-ping1,LI Ya-shuo2,WANG Shuai-qiang3,ZHANG Qing2,YIN Yi-long2,REN Chun-xiao2   

  1. 1.College of Physics and Electronics, Shandong Normal University, Jinan 250014, China 2.School of Computer Science and Technology, Shandong University, Jinan 250101, China 3.School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
  • Received:2013-11-05 Online:2014-03-01 Published:2014-03-01

Abstract:

Defines and extracts minutiae ratio, tight pair-wise prototype distance, grid set distance, and Housdorff distance from minutiae as four auxiliary features. Fingerprint recognition is realized by fusing with an existed minutiae based matching method at the score level. Experiment results on databases of FVC2000, FVC2002 and FVC2004 for international fingerprint verification competition indicate that fused with the discriminating information of the unmatched minutiae, the performance of the fingerprint system is noticeably promoted. The results also verify that unmatched minutiae truly contain discriminating information.

Key words: information processing, fingerprint recognition, unmatched minutiae, score level fusion

CLC Number: 

  • TP391.41
[1] He X, Tian J, Li L,et al. Modeling and analysis of local comprehensive minutia relation for fingerprint matching[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,2007,37(5):1204-1211.
[2] Feng J. Combining minutiae descriptors for fingerprint matching[J]. Pattern Recognition,2008, 41(1):342-352.
[3] Chen F, Zhou J, Yang C. Reconstructing orientation field from fingerprint minutiae to improve minutiae matching accuracy[J]. IEEE Transactions on Image Processing,2009,18(7):1665-1670.
[4] Jain A K, Feng J. Latent fingerprint matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 88-100.
[5] Cao K, Yang X, Chen X, et al. A novel global feature for minutiae-based fingerprint matching[J]. Pattern Recognition Letters, 2012, 33(10):1411-1421.
[6] Paulino A A, Feng J, Jain A K. Latent fingerprint matching using descriptor-based hough transform[J]. IEEE Transactions on Information Forensic and Security,2013,8(1):31-45.
[7] Zhao Q, Zhang Y, Jain A K, et al. A Generative model for fingerprint minutiae[C]∥In Proc International Conference on Biometrics (ICB), Madrid, Spain, 2013:1-8.
[8] Wand Y L, Ning X, Yin Y.A new fingerprint matching algorithm[J]. Journal of Image and Graphics,2003,8(2):203-208.
[9] Feng J, Ouyang Z, Cai A. Fingerprint matching using ridges[J]. Pattern Recognition,2006,39(1):2131-2140.
[10] Jain A K, Prabhakar S, Hong L, et al. Filterbank-based fingerprint matching[J]. IEEE Transactions on Image Processing, 2000, 9(5):846-895.
[11] Yang J C, Park D S. A fingerprint verification algorithm using tessellated invariant moment features[J]. Neurocomputing,2008,71(10-12):1939-1946.
[12] Queka C, Tana K B, Sagarb V K.Pseudo-outer product based fuzzy neural network fingerprint verification system [J].Neural Networks,2001,14(3):305-323.
[13] Labati R D, Genovese A, Piuri V,et al. Contactless fingerprint recognition: A neural approach for perspective and rotation effects reduction[C]∥IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM),Singapore,2013:22-30.
[14] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Trans Pattern Anal Mach Intell, 1993,15(9):850-863.
[15] Ren C, Yin Y, Ma J, et al. A novel method of score level fusion using multiple impressions for fingerprint verification[C]∥IEEE Conference on System, Man and Cybernetics Society (SMCS), San Antonio, TX,2009:5196-5201.
[16] Ross A, Jain A K, Reisman J.A hybrid fingerprint matcher[J]. Pattern Recognition, 2003,36(7):1661-1673.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!