吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 585-594.doi: 10.13229/j.cnki.jdxbgxb201602037

• Orginal Article • Previous Articles     Next Articles

Ab-initio dynamic-step-size searching of protein conformational space

ZHANG Gui-jun, HAO Xiao-hu, ZHOU Xiao-gen, QIN Chuan-qing   

  1. College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
  • Received:2014-07-04 Online:2016-02-20 Published:2016-02-20

Abstract: To address the sampling problem of protein conformational space, an Ab-initio dynamic-step-size searching method of protein conformational space is proposed. This method is based on the energy tree-based searching framework. The high-dimensional optimization space of dihedral angle is projected to a low-dimensional space of feature vector with the protein conformation feature extraction, effectively avoiding the curse of dimensionality problem. The feature space is discretized according to the energy and temperature. Then the layers are systematically divided into cells to reduce the searching space. Relevant Fragment Assembly (FA) step-size and Monte Carlo disturbance step-size are set according to the specific energy layer, and the corresponding Metropolis criterion is employed to accept the conformation within different temperature layers. The replica-exchange method is used as auxiliary method to enhance the sampling of native-like protein conformation. Test results of 12 proteins show that their native-like protein conformations can be reached successfully and effectively by the proposed method.

Key words: artificial intelligence, Ab-initio, tree-based searching, dynamic-step-size, fragment assembly, Monte Carlo

CLC Number: 

  • TP301.6
[1] Ken A Dill, Justin L, Mac Callum. The protein folding problem, 50 years on[J]. Science, 2012, 338 (11): 1042-1046.
[2] Anfinsen C. Principles that govern the folding of protein chains[J]. Science, 1973, 181(96): 223-230.
[3] 许忠能.生物信息学[M].北京:清华大学出版社,2008.
[4] Kim D E, Blum B, Bradley P, et al. Sampling bottlenecks in de novo protein structure prediction[J]. Journal of Molecular Biology, 2009, 393(1): 249-260.
[5] 黄俊峰,段鹏,吴文言.基于模板的蛋白质结构预测[J].生物物理学报,2011,27(1):28-37.
Huang Jun-feng, Duan Peng, Wu Wen-yan. Protein structure prediction based on the template[J]. Acta Biophysica Sinica, 2011,27(1):28-37.
[6] Kryshtafovych A, Fidelis K, Moult J. CASP10 results compared to those of previous CASP experiments[J]. Proteins: Structure, Function, and Bioinformatics, 2014, 82(S2): 164-174.
[7] Beliakov G, Lim K F. Challenges of continuous global optimization in molecular structure prediction[J]. European Journal of Operational Research, 2007, 181(3): 1198-1213.
[8] Tantar A A, Melab N, Talbi E G, et al. A parallel hybrid genetic algorithm for protein structure prediction on the computational grid[J]. Future Generation Computer Systems, 2007, 23(3): 398-409.
[9] Hoque M T, Chetty M, Lewis A, et al. Twin removal in genetic algorithms for protein structure prediction using low-resolution model[J]. Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 2011, 8(1): 234-245.
[10] Islam M K, Chetty M. Clustered memetic algorithm with local heuristics for Ab-initio protein structure prediction[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(4): 558-576.
[11] Custódio F L, Barbosa H J C, Dardenne L E. A multiple minima genetic algorithm for protein structure prediction[J]. Applied Soft Computing, 2014, 15: 88-99.
[12] Duan Y, Kollman P A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution[J]. Science, 1998, 282(5389): 740-744.
[13] Scheraga H A, Khalili M, Liwo A. Protein folding dynamics: overview of molecular simulation techniques[J]. Annu Rev Phys Chem, 2007, 58: 57-83.
[14] Lindorff-Larsen K, Trbovic N, Maragakis P, et al. Structure and dynamics of an unfolded protein examined by molecular dynamics simulation[J]. Journal of the American Chemical Society, 2012, 134(8): 3787-3791.
[15] Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding[J]. Proteins: Structure, Function, and Bioinformatics, 2002, 48(2): 192-201.
[16] Shen Y, Picord G, Guyon F, et al. Detecting protein candidate fragments using a structural alphabet profile comparison approach[J]. PloS One, 2013, 8(11): e80493.
[17] Xu D, Zhang Y. Toward optimal fragment generations for ab-initio protein structure assembly[J]. Proteins: Structure, Function, and Bioinformatics, 2013, 81(2): 229-239.
[18] Dotu I, Cebrian M, Van Hentenryck P, et al. On lattice protein structure prediction revisited[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(6): 1620-1632.
[19] Tyka M D, Jung K, Baker D. Efficient sampling of protein conformational space using fast loop building and batch minimization on highly parallel computers[J]. Journal of Computational Chemistry, 2012, 33(31): 2483-2491.
[20] Joo K, Lee J, Sim S, et al. Protein structure modeling for CASP10 by multiple layers of global optimization[J]. Proteins: Structure, Function, and Bioinformatics, 2014, 82(S2): 188-195.
[21] Sugita Y, Okamoto Y. Replicae-xchange molecular dynamics method for protein folding[J]. Chemical Physics Letters, 1999, 314(1): 141-151.
[22] Sugita Y, Okamoto Y. Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape[J]. Chemical Physics Letters, 2000, 329(3): 261-270.
[23] Shehu A. An Ab-initio tree-based exploration to enhance sampling of low-energy protein conformations[C]∥Robotics: Science and Systems,2009: 241-248.
[24] Shehu A, Olson B. Guiding the search for native-like protein conformations with an Ab-inito tree-based exploration[J]. Robotics Research,2010, 29(8):1106-1127.
[25] Olson B, Molloy K, Shehu A. In search of the protein native state with a probabilistic sampling approach[J]. Journal of Bioinformatics and Computational Biology, 2011, 9(3): 383-398.
[26] Olson B, Shehu A. Evolutionary-inspired probabilistic search for enhancing sampling of local minima in the protein energy surface[J]. Proteome Sci, 2012, 10(Suppl 1): S5.
[27] Molloy K, Saleh S, Shehu A. Probabilistic search and energy guidance for biased decoy sampling in Ab initio protein structure prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2013, 10(5): 1162-1175.
[28] 周建红,艾观华,方慧生,等.蛋白质结构从头预测方法研究进展[J].生物信息学, 2011,9(1):1-5.
Zhou Jian-hong, Ai Guan-hua, Fang Hui-sheng, et al. Progress in ab initio protein structure prediction[J]. Bioinformatics, 2011, 9(1):1-5.
[29] Bradley P, Misura K M, Baker D. Toward high-resolution de novo structure prediction for small proteins[J]. Science, 2005, 309(5742): 1868-1871.
[30] Liwo A, Khalili M, Scherage H A. Ab-initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains[J]. PNAS, 2005, 102 (7): 2362-2367.
[31] Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures[J]. Proceedings of the National Academy of Sciences of the Unitized States of America, 2000, 97(19): 10383-10388.
[32] Kortemme T, Morozov A V, Baker D. An orientation-dependent hydrogen bonding potential improves prediction of speci?city and structure for proteins and protein-protein complexes[J]. Journal of Molecular Biology, 2003, 326(4): 1239-1259.
[33] Enoch S Huang, Ram Samudrala, Britt H Park. Scoring functions for ab initio protein structure prediction[J]. Methods Mol Biol, 2000, 143 (1): 223-245.
[34] Ballester P J, Richards W G. Ultrafast shape recognition for similarity search in molecular databases[J]. Proc R Soc A, 2007,463(2081): 1307-1321.
[35] Lee J, Scheraga H A, Rackovsky S. New optimization method for conformational energy calculations on polypeptides: conformational space annealing[J]. Journal of Computational Chemistry, 1997, 18(9): 1222-1232.
[36] Berg B A, Neuhaus T. Multicanonical ensemble: a new approach to simulate first-order phase transitions[J]. Physical Review Letters, 1992, 68(1):9-12.
[37] Wang G, Dunbrack R L. PISCES: a protein sequence culling server[J]. Bioinformatics, 2003, 19(12): 1589-1591.
[38] Gront D, Kulp D W, Vernon R M, et al. Generalized fragment picking in Rosetta: design, protocols and applications[J]. PLoS One, 2011, 6(8): e23294.
[39] Keaver-Fay A, Tyka M, Lewis S M, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules[J]. Methods in Enzymology, 2011, 487:545-574.
[40] Li Z, Scheraga H A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding[J]. PNAS, 1987, 84(19): 6611-6615.
[41] Lee J Y, Lee J Y, Sasaki T N, et al. De novo protein structure prediction by dynamic fragment assembly and conformational space annealing[J]. Proteins, 2011, 79(8):2403-2417.
[42] Stoean C, Preuss M, Stoean R, et al. Multimodal optimization by means of a topological species conservation algorithm[J]. Evolutionary Computation, 2010, 14(6): 842-864.
[1] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[2] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[3] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[10] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[11] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[12] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[13] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[14] WANG Sheng-sheng, WANG Chuang-feng, GU Fang-ming. Spatio-temporal reasoning for OPRA direction relation network [J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[15] MA Miao, LI Yi-bin. Multi-level image sequences and convolutional neural networks based human action recognition method [J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .