吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1201-1206.doi: 10.13229/j.cnki.jdxbgxb201704027

• Orginal Article • Previous Articles     Next Articles

Low-cycle fatigue fracture behavior of nanoscale interface

YAN Ya-bin, WANG Xiao-yuan, WAN Qiang   

  1. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621900, China
  • Received:2016-03-08 Online:2017-07-20 Published:2017-07-20

Abstract: An experiment method is developed to investigate the low-cycle fatigue fracture behavior of nano-material interface. Focused Ion Beam (FIB) and Transmission Electron Microscopy (TEM) are used in the experiments. With FIB, a nano-cantilever specimen consisting of a copper (Cu) layer of 200-nm-thick and a silicon nitride (SiN) layer of 1000-nm-thick on a silicon (Si) substrate is fabricated from a macroscale multi-layered material (Si/Cu/SiN). Using a minute loading apparatus, the cyclic loading experiment is conducted in TEM, and the low-cycle fatigue fracture of Cu/Si interface in different specimens is in situ observed. The fatigue strength of Cu/Si interface is around GPa level owing to the high yield stress of the Cu nano-film and the deformation constraint associated with the neighboring hard materials. The S-N curve shows clear dependence of fatigue life on the applied stress in the high stress range and the existence of a fatigue threshold at low stress range. Moreover, the high ratio of fatigue limit to the fracture stress in a monotonic loading suggests the brittle behavior of the interface in nanoscale materials.

Key words: engineering mechanics, fatigue, interface, delamination damage, nanoscale, in situ experiment

CLC Number: 

  • O346.1
[1] Liu W, Bayerlein M, Mughrabi H. Crystallographic features of intergranular crack initiation in fatigued copper polycrystals[J]. Acta Metallurgica, 1992, 40(7):1763-1771.
[2] Polak J, Liskutin P. Nucleation and short crack growth in fatigued, polycrystalline copper[J]. Fatigue and Fracture of Engineering Materials and Structures, 1990,13(2): 119-133.
[3] Kitamura T, Shibutani T, Ueno T. Crack initiation at free edge of interface between thin films in advanced LSI[J]. Engineering Fracture Mechanics, 2002,69(12):1289-1299.
[4] Kitamura T, Hirakata H, Itsuji T. Effect of residual stress on delamination from interface edge between nano-films[J]. Engineering Fracture Mechanics, 2003,70(15): 2089-2101.
[5] Hirakata H,Takahashi Y,Truong D V,et al.Role of plasticity on interface crack initiation from a free edge and propagation in a nano-component[J]. International Journal of Fracture,2007,145:261-271.
[6] Sumigawa T, Shishido T, Murakami T, et al. Interface crack initiation due to nano-scale stress concentration[J]. Materials Science and Engineering A, 2010,527(18,19):4796-4803.
[7] Sumigawa T, Shishido T, Murakami H, et al. Evaluation on plastic deformation property of copper nano-film by nano-scale cantilever specimen[J]. Thin Solid Films, 2010,518(21):6040-6047.
[8] 闫亚宾, 北村隆行, 澄川贵志. 基于FIB和TEM的纳米材料中界面分层破坏的实验方法研究与应用[J]. 中国科学: 物理学·力学·天文学,2014,44(6): 593-598.
Yan Ya-bin, Kitamura Takayuki, Sumigawa Takashi. A FIB and TEM based experimental method for interface delamination in nanoscale materials and its application[J]. Scientia Sinica Physica, Mechanica and Astronomica, 2014,44(6):593-598.
[9] Sumigawa T, Murakami T, Shishido T, et al. Cu/Si interface fracture due to fatigue of copper film in nanometer scale[J]. Materials Science and Engineering A, 2010,527(24,25):6518-6523.
[10] Han S Z,Goto M, Lima C,et al.Fatigue behavior of nano-grained copper prepared by ECAP[J].Journal of Alloys and Compounds,2007,434-435:304-306.
[11] Suresh S. Fatigue of Materials[M]. Cambridge: Cambridge University Press, 1991.
[1] NI Ying-sheng,SUN Qi-xin,MA Ye,XU Dong,LIU Chao. Shear distribution of multi-cell corrugated steel web composite beams based on space grid analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1735-1746.
[2] MAO Yu-ze, WANG Li-qin. Influence of squirrel-cage flexible support on the dynamic performance of ball bearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1508-1514.
[3] ZHENG Xiao-yi, SUN Da-qian, LI Xin, DU Gui-gang, XIN Wei-da, REN Zhen-an. Microstructure and properties of cladded Al-Nb layers reinforced by NbAl3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1531-1536.
[4] WANG Chun-sheng, ZOU Li, YANG Xin-hua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory [J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[5] JIANG Hai-yu, LIU Yu-hai, SUN Hai-lin, XU Ke-bin, BAI Tian-zeng, CHEN Zu-bin. Stratum undulation velocity model optimization algorithm for microseismic monitoring on surface [J]. 吉林大学学报(工学版), 2017, 47(6): 1969-1975.
[6] ZHU Jian-feng, ZHANG Jun-yuan, CHEN Xiao-kai, GU Yao-ying, WANG Shui-ying. Block cycle load compilation for automotive control arm fatigue bench test [J]. 吉林大学学报(工学版), 2017, 47(5): 1367-1372.
[7] JIN Jing-fu, LI Yang, CHEN Ting-kun, CONG Qian, QI Ying-chun. Effect of elastic modulus of coating on ice-adhesion strength on substrate [J]. 吉林大学学报(工学版), 2017, 47(5): 1548-1553.
[8] WANG Guo-lin, SUN Yan-tian, LIANG Chen, YANG Jian, ZHOU Hai-chao. Contour design of radial tire based on full stress theory [J]. 吉林大学学报(工学版), 2017, 47(2): 365-372.
[9] XU Jin, CHEN Wei, ZHOU Jia, LUO Xiao, SHAO Yi-ming. Correlation between steering and driver's workload [J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[10] MENG Guang-wei, FENG Xin-yu, ZHOU Li-ming, Li Feng. Structural reliability analysis based on dimension reduction algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 174-179.
[11] CHEN Jiang-yi, LIU Bao-yuan. Influence of fiber fracture damage on dispersion characteristic of guided wave in composite plate [J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[12] YU Tian-lai, LIU Xing-guo, YAO Shuang, Muhammad Mansour. Fatigue performance of RC beams strengthened with externally prestressed CFRP tendons [J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873.
[13] GUAN Jian, WANG Li-qin. Modified life model of ball bearing considering load changing sequence [J]. 吉林大学学报(工学版), 2016, 46(4): 1182-1189.
[14] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[15] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds [J]. 吉林大学学报(工学版), 2016, 46(2): 511-515.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!