Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1369-1376.doi: 10.13229/j.cnki.jdxbgxb20171005

Previous Articles    

Fast ship detection in optical remote sensing images

Chao DONG1,2(),Jing⁃hong LIU1(),Fang XU1,Ren⁃hao WANG3   

  1. 1. Key Laboratory of Airborne Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
    3. School of Mechatronics, Harbin Institude of Technology,Harbin 150001,China
  • Received:2017-09-26 Online:2019-07-01 Published:2019-07-16
  • Contact: Jing?hong LIU E-mail:dongchao315@mails.ucas.ac.cn;liu1577@126.com

Abstract:

Because the most existing ship detection methods do not perform well for various high sea clutter situations, according to the characteristic difference between man?made object and natural background, we propose a novel saliency detection model by computing the eigenvalues of region covariances. To the best of our knowledge, there is no existing reference in the literature about exploring the relationship between the different eigenvalues of region covariances and saliency so far. We further integrate the feature maps linearly by assigning adaptive weight value based on information entropy. The proposed approach has a remarkable ability to pop out targets and suppress distractors against clutter introduced by heavy clouds, islands as well as ship wakes. Furthermore, our model is fast and efficient which has great potential in engineering applications. Extensive experiments have been carried out on optical satellite images and experimental results demonstrate that our approach outperforms 5 existing salient object detection methods in the Area Under the Receiver Operating Characteristics.

Key words: information processing technology, ship detection, visual attention model, region covariance, information entropy

CLC Number: 

  • TN919.8

Fig.1

"

Fig.2

"

Fig.3

Saliency results contrast of saliency models"

Fig.4

ROC curves"

Table 1

Detection results of different methods"

方法 P d /% P f /%
文献[2] 82.5 18.8
文献[6] 90.3 6.2
本文 90.6 10.3

Fig.5

Influence of parameter z on detetion performance"

Fig.6

Convergence rate of multi?layer cellular automata"

1 王彦情, 马雷, 田原 . 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011, 37(9):1029⁃1039.
Wang Yan⁃qing , Ma Lei , Tian Yuan . State⁃of⁃the⁃art of ship detection and recognition in optical remotely sensed imagery[J]. Acta Automatica Sinica, 2011, 37(9):1029⁃1039.
2 刘峰,沈同圣,马新星,等 . 基于多波段深度神经网络的舰船目标识别[J]. 光学精密工程, 2017, 25(11):2939⁃2946.
Liu Feng , Shen Tong⁃sheng , Ma Xin⁃xing , et al . Ship recongnition based on multi⁃band deep neural network[J]. Optics and Precision Engineering, 2017, 25(11):2939⁃2946.
3 Tang Jie⁃xiong , Deng Chen⁃wei , Huang Guang⁃bin , et al . Compressed⁃domain ship detection on spaceborne optical image using deep neural network and extreme learning machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1174⁃1185.
4 Bi F H , Zhu B C , Gao L M , et al . A visual search inspired computational model for ship detection in optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):749⁃753.
5 张国敏,殷建平,祝恩,等 . 遥感图像中基于视觉显著性的分层目标检测[J].吉林大学学报:工学版, 2007, 37(3): 625⁃629.
Zhang Guo⁃min , Yin Jian⁃ping , Zhu En , et al . Hierarchical object detection in remote sensing image based on vision saliency [J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(3): 625⁃629.
6 徐芳,刘晶红,曾冬冬,等 . 基于视觉显著性的无监督海面舰船检测与识别[J]. 光学精密工程,2017, 25(5):1300⁃1311.
Xu Fang , Liu Jing⁃hong , Zeng Dong⁃dong , et al . Detection and identification of unsupervised ships and warships on sea surface based on visual saliency[J]. Optics and Precision Engineering, 2017, 25(5): 1300⁃1311.
7 Itti L , Koch C , Niebur E . A model of saliency⁃based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11):1254⁃1259
8 Harel J , Koch C , Perona P . Graph⁃based visual saliency[J]. Advances in Neural Information Processing Systems, 2006, 19:545⁃552.
9 张文杰,熊庆宇 . 基于对比度与空间位置特征的显著性区域检测[J]. 吉林大学学报:工学版, 2015, 45(5): 1710⁃1716.
Zhang Wen⁃jie , Xiong Qing⁃yu . Image salient region detection algorithm based on contrast and spatial location[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(5): 1710⁃1716.
10 Shu F , Li J , Tian Y H , et al . Learning discriminative subspaces on random contrasts for image saliency analysis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(5):1095⁃1108.
11 Erdem E , Erdem A . Visual saliency estimation by nonlinearly integrating features using region covariances[J]. Journal of Vision, 2013, 13(4):1⁃19.
12 Hou X D , Zhang L Q . Saliency detection: a spectral residual approach[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Los Alamitos: IEEE Computer Society Press, 2007: 1⁃8.
13 Tuzel O , Porikli F , Meer P . Region covariance: a fast descriptor for detection and classification[C]∥The 9th European Conference on Computer Vision, Graz, Austria, 2006, 3952:589⁃600.
14 Cao Z J , Ge Y C , Feng J L . Fast target detection method for high⁃resolution SAR images based on variance weighted information entropy[J]. Eurasip Journal on Advances in Signal Processing, 2014, 45:1⁃11.
15 Cheng G , Han J W . A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117:11⁃28.
16 Wang Y H , Liu H W . A hierarchical ship detection scheme for high⁃resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 4173⁃4184.
17 Forstner W , Moonen B . A Metric for Covariance Matrices[M]. Heidelberg: Springer, 2003: 299⁃309.
18 Qin Y , Lu H C , Xu Y Q ,et al . Saliency detection via cellular automata[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA,2015:110⁃119.
[1] Tohtonur,Hai⁃long ZHANG,Jie WANG,Na WANG,Xin⁃chen YE,Wan⁃qiong WANG. High speed median filtering algorithm based on graphics processing unit [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 979-985.
[2] Lu⁃tao LIU,Na LI. Source detection based on coprime array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 986-993.
[3] Yin⁃juan FU,Yong LI,Li⁃qin XU,Kun⁃hui ZHANG. Design and analysis of NLFM⁃Costas RF stealth radar signal [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 994-999.
[4] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[5] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[6] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[7] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[8] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[9] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[10] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[11] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[12] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[13] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[14] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[15] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!