Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1451-1458.doi: 10.13229/j.cnki.jdxbgxb20180354

Previous Articles    

Influencing factors analysis and experimental study of battery performances in hybrid electric vehicle

Guang-hui FAN1,2(),Jian-wu YU1,2(),Hong LUO2,Xin LI2,Ya-fei ZHANG1   

  1. 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
    2. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
  • Received:2018-04-16 Online:2019-09-01 Published:2019-09-11
  • Contact: Jian-wu YU E-mail:79022719@qq.com;yokenbu@yahoo.com

Abstract:

Taking a lithium pouch battery of a hybrid electric vehicle as the research object, the influences of temperature and State of Charge (SOC) on battery capacity, DC internal resistance and open-circuit voltage were experimentally studied. Also the factors influencing the battery life were analyzed. The performance parameters of a large number of lithium batteries were statistically tested, the consistency and correlation of the battery performance parameters were investigated. Experimental results show that over high or over low temperature could lead to an increase in battery resistance and a decrease in battery capacity, which reduces battery life. Excessively low SOC can also cause the increase of internal resistance of the battery and the drastic change of open-circuit voltage, which not only reduces the battery life, but also weakens the efficiency of the battery. There is a certain correlation between the performance parameters of the batch battery, and its consistency is greatly influenced by the number of batteries. The optimization of the number of batteries, the use of temperature and the SOC not only improves the dynamic performance, but also significantly improves the service life of the hybrid electric vehicle.

Key words: vehicle engineering, battery capacity, direct current resistance, open circuit voltage, battery life

CLC Number: 

  • U469.72

Fig.1

Schematic diagram of ARC test"

Fig.2

ARC adiabatic test equipment"

Fig.3

Temperature measuring device and test site"

Fig.4

Power battery charging and discharging test equipment"

Fig.5

Battery cell"

Table 1

Basic battery performance parameters"

项 目标 准
标称容量/(A·h)32
容量范围/(A·h)31~33
标称电压/V2.2
交流内阻/mΩ≤1
充电截止电压/V2.8±0.05
充电截止电流/A0.01
放电截至电压/V2.5
循环寿命/次8000
最大持续放电电流/A9
5 s脉冲放电电流/A320
充电工作温度/℃0~55
放电工作温度/℃-20~60
储存温度/℃-20~45
电池重量/g860±20

Table 2

Design of temperature conditions of"

工况序号环境温度/℃放电倍率/C
1-201
201
3251
4451

Table 3

Definition of battery parameter variable"

随机变量电池参数相关系数相关性
xi电池容量Cxyxiyi相关性
yi直流内阻Cxzxizi相关性
zi开路电压Cyzyizi相关性

Fig.6

Battery parameter test data"

Fig.7

DC resistance curves of battery at different SOC and temperatures"

Fig.8

Standard error of battery parameters"

Table 4

Battery parameter"

参 数电池容量/(mA·h)直流内阻/mΩ开路电压/mV
均值323520.4562229
标准差210.80.041 41.309
标准误差/%0.659.080.59

Fig.9

Correlation curve of battery parameters"

1 张向文, 高冠. 电动汽车动力电池绝缘电阻实时在线监测系统[J]. 吉林大学学报: 工学版, 2017, 47(5): 1395-1402.
ZhangXiang-wen, GaoGuan. Real-time on-line monitoring system for power battery insulation resistance of electric vehicle[J]. Journal of Jilin University (Engineering and Technical Edition), 2017, 47(5): 1395-1402.
2 TroxlerY, WuB, MarinescuM, et al. The effect of thermal gradients on the performance of lithiumion batteries[J]. Journal of Power Sources, 2014, 247: 1018-1025.
3 罗玉涛, 何小颤. 动力锂离子电池热安全性影响因素的研究[J]. 汽车工程, 2012, 34(4): 333-338.
LuoYu-tao, HeXiao-chan. A research on the affecting factors of thermal safety in lithium-ion power battery[J]. Automotive Engineering, 2012, 34(4): 333-338.
4 张志杰, 李茂德. 锂离子电池内阻变化对电池温升影响分析[J]. 电源技术, 2010, 34(2): 128-130.
ZhangZhi-jie, LiMao-de. Effect of internal resistance on temperature rising of lithium-ion battery[J]. Chinese Journal of Power Sources, 2010, 34(2): 128-130.
5 余剑武, 范光辉, 雷吉平, 等. 动力电池组汇流排过载能力及电流均衡性影响因素研究[J]. 中国机械工程,2017, 28(20): 2426-2433.
YuJian-wu, FanGuang-hui, LeiJi-ping, et al. Research on overloading capacity of bus bars in battery module and influence factors of current balance[J]. China Mechanical Engineering, 2017, 28(20): 2426-2433.
6 LinChun-jing, XuSi-chuan, LiZhao. Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles[J]. Journal of Power Sources, 2015, 294: 633-642.
7 何耀, 刘兴涛, 张陈斌, 等. 基于动力电池组内阻模型的绝缘检测算法[J]. 吉林大学学报: 工学版, 2013, 43(5): 1165-1170.
HeYao, LiuXing-tao, ZhangChen-bin, et al. Insulation detection algorithm for high power power battery system based on internal resistance model[J].Journal of Jilin University (Engineering and Technical Edition), 2013, 43(5): 1165-1170.
8 PendergastD R, DemauroE P, FletcherM, et a1. A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources,2011, 196(2): 793-800.
9 郭宏榆, 姜久春, 王吉松, 等. 功率型锂离子动力电池的内阻特性[J]. 北京交通大学学报, 2011, 35(5): 119-123.
GuoHong-yu, JiangJiu-chun, WangJi-song, et a1. Characteristic on internal resistance of lithiumion power battery[J]. Journal of Beijing Jiaotong University,2011, 35(5): 119-123.
10 SauvéP J B, TounsiP, ScheidE, et al. 3D electro thermal investigations for reliability of ultra-low on state resistance power mosfet[J]. Microelectronics’ Reliability, 2008, 48(8/9): 1464-1467.
11 李哲, 韩雪冰, 卢兰光, 等. 动力型磷酸铁锂电池的温度特性[J]. 机械工程学报, 2011, 47(18): 115-120.
LiZhe, HanXue-bing, LuLan-guang, et al. Temperature characteristics of power LiFePO4 batteries[J]. Journal of Mechanical Engineering, 2011, 47(18): 115-120.
12 秦大同, 林毓培, 胡建军, 等. 基于无级变速器速比控制的插电式混合动力汽车再生制动控制策略[J]. 吉林大学学报: 工学版, 2018, 48(2): 380-386.
QinDa-tong, LinYu-pei, HuJian-jun, et al. Regenerative braking control strategy of plug-in hybrid electric vehicle based on speed ratio control continuously variable transmission[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 380-386.
13 HeF, WangH, MaL. Experimental demonstration of active thermal control of a battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2015, 91(12): 630-639.
14 宋传学, 周放, 肖峰. 基于动态规划的复合电源能量管理优化[J]. 吉林大学学报: 工学版, 2017, 47(1): 8-14.
SongChuan-xue, ZhouFang, XiaoFeng. Energy management optimization of hybrid storage system (HESS) based on dynamic programming[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(1): 8-14.
15 DuanX, NatererG F. Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat Mass Transfer, 2010, 53: 5176-5182.
16 DubarryM, VuillaumeN, LiawB Y. Origins and accommodation of cell variations in Li-ion battery pack modeling[J].International Journal of Energy Research, 2010, 34: 216-231.
17 王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7): 17-20.
WangZhen-po, SunFeng-chun, LinCheng. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 17-20.
18 戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014, 36(2): 181-188.
DaiHai-feng, WangNan, WeiXue-zhe, et al. A research review on the cell inconsistency of Li-ion traction batteries in electric vehicles[J]. Automotive Engineering, 2014, 36(2): 181-188.
19 BandhauerT M, GarimellaS, FullerT F. A critical review of thermal issues in lithium-ion batteries[J]. Journal of The Electrochemical Society, 2011, 158(3): 1-25.
20 SvetnikV, WangT, TongC, et al. Boosting: an ensemble learning tool for compound classification and QSAR modeling[J]. Journal of Chemical Information & Modeling, 2005, 45(3): 786-799.
21 VetterJ, NovákP, WagnerM R, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1): 269-281.
22 杨彦涛, 张研, 范光辉. 电池性能参数相关性及发热特性[J]. 电池, 2018, 48(3): 191-194.
YangYan-tao, ZhangYan, FanGuang-hui. Correlation of battery performance parameters and thermal characteristics[J]. Battery Bimonthly, 2018, 48(3): 191-194.
23 范光辉, 余剑武 ,罗红, 等. 汇流排对电池模组温度与电流均衡性的影响分析和实验研究[J]. 汽车工程, 2019, 41(2): 140-146.
FanGuang-hui, YuJian-wu, LuoHong,et al. Analysis and experimental study on the influence of bus-bar on the temperature and current equalization of battery module[J]. Automotive Engineering, 2019, 41(2): 140-146.
[1] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[2] Zhen-hai GAO,Tian-jun SUN,Lei HE. Causal reasoning decision⁃making for vehicle longitudinal automatic driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1392-1404.
[3] Bo ZHANG,Jian-wei ZHANG,Kong-hui GUO,Hai-tao DING,Hong-qing CHU. Current control of permanent magnet synchronous motor for road feeling simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1405-1413.
[4] Peng-yu WANG,Shi-jie ZHAO,Tian-fei MA,Xiao-yong XIONG,Xin CHENG. Vehicle multi-sensor target tracking and fusion algorithm based on joint probabilistic data association [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1420-1427.
[5] Xing-jun HU,Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG,Fei LIU. Characteristics of aerodynamics for an automobile by fluid-structure coupled method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1414-1419.
[6] Xiao-jian HAN,Wei-qiang ZHAO,Li-jun CHEN,Hong-yu ZHENG,Yang LIU,Chang-fu ZONG. Local path planning of bus based on RS-RRT algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1428-1440.
[7] Ting YAN,Lin YANG,Liang CHEN. AMT shift actuator adaptive intelligent control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1441-1450.
[8] Jing LI,Qiu⁃jun SHI,Peng LIU,Ya⁃wei HU. Neural network sliding mode control of commercial vehicle ABS based on longitudinal vehicle speed estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1017-1025.
[9] Shun YANG,Yuan⁃de JIANG,Jian WU,Hai⁃zhen LIU. Autonomous driving policy learning based on deep reinforcement learning and multi⁃type sensor data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1026-1033.
[10] Xin CHEN,Ming LI,Xin⁃jian RUAN,Ning WANG,Jia⁃ning WANG. Investigation of vortical structures in wake of Ahmed body by delayed detached⁃eddy simulation turbulence model using immersed boundary method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1034-1042.
[11] Hua ZHOU,Zhi⁃gang YANG,Hui ZHU. Aerodynamic calculation of MIRA model correlated with wind tunnel test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1043-1053.
[12] Ji⁃qing CHEN,Meng⁃meng LIU,Feng⁃chong LAN. Experiment on overcharge safety of NCM battery and battery pack [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1072-1080.
[13] Run⁃dong LIU,Jun MAO,Yan⁃hong XI,Hong⁃yu ZHANG,Fei PENG. Pressure pulse on windbreak impacting by cross⁃wind coupling with high⁃speed trains passing each other [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1054-1062.
[14] Guo⁃feng QIN,Jing⁃xin NA,Wen⁃long MU,Wei TAN,Jian⁃ze LUAN,Hao SHEN. Degradation failure of adhesively bonded CFRP/aluminum alloy subjected to high temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1063-1071.
[15] Li⁃bin ZHANG,Dao WU,Hong⁃ying SHAN,Xiang⁃jing DENG. Design of axle load self⁃adjusting system for multi⁃axle vehicle based on brake tester [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1081-1091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!