Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1081-1091.doi: 10.13229/j.cnki.jdxbgxb20180246

Previous Articles    

Design of axle load self⁃adjusting system for multi⁃axle vehicle based on brake tester

Li⁃bin ZHANG1(),Dao WU1,Hong⁃ying SHAN2(),Xiang⁃jing DENG3   

  1. 1. College of Transportation,Jilin University,Changchun 130022,China
    2. College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    3. Engineering Research Institute,Beijing Electric Vehicle Co Ltd,Beijing 102606,China
  • Received:2018-03-17 Online:2019-07-01 Published:2019-07-16
  • Contact: Hong?ying SHAN E-mail:zlb@jlu.edu.cn.;hy@jlu.edu.cn

Abstract:

Aiming at the problems that the pressure of wheels apply on Anti-force Roller Brake Tester is over large or over small, or even completely overhead for the test of multi-axle tractor braking performance, a detecting system for automatic adjustment of axle load was designed. This system was based on the Solidworks software designed for the axle load self-adjusting lifting device. Taking the four axles truck for example, a vehicle-tester multibody dynamic simulation model was developed in Adams virtual prototype technology. Through the simulation, the axis load-height changing curve was obtained in turn. Combined with the established model of axle load distribution for multi-axle vehicles, the height of the non-detection axis was automatically adjusted to realize the purpose of changing the axle load of the testing axle. To verify the accuracy of the simulation model, a real truck comparison test was carried out. At the same time, in order to verify the feasibility of the detection system, tests of five types of trucks with different curb weight was carried out. The results indicate that the maximum error between the established model and vehicle test is 4.47%, and the relative errors are less than 5% by five types of trucks, meeting the practical test requirement.

Key words: vehicle engineering, multi?axle vehicle, axle load self?adjustment, virtual prototype, axle load distribution

CLC Number: 

  • U472.9

Fig.1

Diagram of basic force system"

Fig.2

Mp , M 1 and Mi of basic force system under load and unit force"

Fig.3

Schematic diagram of layout of lifting device"

Fig.4

Schematic diagram of lifting motion"

Fig.5

"

Fig.6

"

Table 1

Main parameters of heavy truck"

参 数 数 值
整备质量/kg 13810
额定载质量/kg 14490
驾驶员质量/kg 65
一、二轴钢板悬架刚度/(N·m-1) 426087
三、四轴钢板悬架刚度/(N·m-1) 3362745
弹簧片数 10、10、11
轮胎刚度/(N·m-1) 1209000
轮胎阻尼系数/ (N·s·m-1) 50
货箱尺寸/m 6.4×2.3×1.19
整车尺寸/m 9.11×2.49×3.26
轴距/m 1800+2850+1380
轮胎半径/m 0.565
轮胎宽度/m 0.195

Fig.7

Vehicle?tester multibody dynamic simulation model"

Table 2

Main conditional constraint in Adams model"

序号 Part?1 Part?2 约束名称
1 升降装置 地面 固定副
2 制动试验台 地面 固定副
4 升降装置底座 空气弹簧 固定副
5 车轮(一轴) 滚筒 接触副
6 车轮(二轴) 升降装置举升板 接触副
7 车轮(三轴、四轴) 地面 接触副
8 升降装置举升板 空气弹簧 移动副
9 滚筒 滚筒轴承 旋转副
10 四轴车各车轮 四轴车各轴 旋转副

Fig.8

Control scheme of axle load self?adjusting system"

Fig.9

Height?axis load changing curves with ascending process"

Fig.10

Height?axis load changing curve with descending process"

Fig.11

Force model of dual?axis vehicle"

Fig.12

Error graph between simulation curve and test data"

Table 3

Error between simulation results and"

轴名称 非检测轴升高过程 非检测轴下降过程
误差最大值/kg 相对误差/% 误差最大值/kg 相对误差/%
第一轴 138.73 4.47 111.60 3.60
第二轴 117.11 3.99 82.05 2.78
第三轴 56.16 1.43 31.22 0.79
第四轴 80.72 1.98 56.10 1.38

Table 4

Theoretical axial load and actual axle load of each axis"

车 型 轴重制动复合试验台所测轴荷 G e x p i /kg 轴重试验台测得的实际轴荷 G s t i /kg
一轴 二轴 三轴 四轴 一轴 二轴 三轴 四轴
东风牌EQ3240VP4 2672 2900 3357 3542 2574 2902 3421 3574
欧曼牌BJ3247DLPJC?S 2821 3040 3512 3683 2872 3084 3552 3548
福田牌BJ3288DMPHC?1 2962 3351 3968 4249 2915 3285 4054 4276
解放牌CA3300P1K2L3T4EA80 3164 3534 4070 4307 3097 3489 4066 4423
重汽豪沃ZZ3317N3567D1 3609 3949 4608 4862 3684 3978 4534 4832
1 Pernestål A , Nyberg M , Warnquist H . Modeling and inference for troubleshooting with interventions applied to a heavy truck auxiliary braking system[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 705⁃ 719.
2 Xu G , Su J , Chen R , et al . Measurement performance assessment: dynamic calibration compared withstatic calibration method for roller tester of vehicle brake force[J]. Advances in Mechanical Engineering, 2014,6: 162435.
3 Bera T K , Bhattacharya K , Samantaray A K . Evaluation of antilock braking system with an integrated model of full vehicle system dynamics[J]. Simulation Modelling Practice and Theory, 2011, 19(10): 2131⁃2150.
4 GB21861-2014. 机动车安全技术检验项目和方法:[S].
5 Fedotov A I , Młyńczak M . Analytical identification of parameters influencing measurement quality using flat brake tester[J]. Advances in Intelligent Systems and Computing, 2016, 470: 147⁃155.
6 Boć M , Vučetić A , Iliňić P , et al . Retrofit of a roller brake tester at famena[J]. Transactions of Famena, 2014, 38(3): 95⁃102.
7 夏均忠, 王太勇, 李树珉 . 汽车制动试验台测试性能分析与应用[J]. 农业机械学报, 2005, 36(12): 13⁃16.
Xia Jun⁃zhong , Wang Tai⁃yong , Li Shu⁃min . Study on performance and application for vehicle brake tester[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(12): 13⁃16.
8 Senabre C , Velasco E , Valero S . Comparative analysis of vehicle brake data in the ministry of transport test on the roller brake tester and on flat ground[J]. International Journal of Automotive Technology, 2012, 13(5): 735⁃742.
9 Senabre C , Velasco E , Valero S . Comparative analysis of brake data of vehicles on two different ministry of transport brake roller testers[J]. Journal of Testing and Evaluation, 2012, 40(4): 104559.
10 赵哲峰 . 可变滚筒轴距反力式制动检验台的研究[D]. 长春:吉林大学交通学院, 2008.
Zhao Zhe⁃feng . Research on auti⁃force changeable distance roller brake testing platform[D]. Changchun: College of Transportation, Jilin University, 2008.
11 黄万友, 于明进, 富文军, 等 . 汽车滚筒反力式制动台测量结果的影响因素分析[J]. 江苏大学学报:自然科学版, 2016, 37(5): 497⁃502.
Huang Wan⁃you , Yu Ming⁃jin , Fu Wen⁃jun , et al . Analysis of influencing factors on testing results of vehicle roller anti-force brake testing plarform[J]. Journal of Jiangsu University(Natural Science Edition), 2016, 37(5): 497⁃502.
12 陈南峰, 谷占勋, 应朝阳, 等 . 重型载货车辆行车制动性能加载检测的研究[J]. 汽车与安全, 2015(4):94⁃99.
Chen Nan⁃feng , Gu Zhan⁃xun , Ying Zhao⁃yang , et al . Research on heavy laden vehicle brake performance load testing[J]. Auto and Safety, 2015(4): 94⁃99.
13 陈书明, 王连会, 陈静, 等 . 一种滚筒反力式制动试验台制动轴荷再分配装置[P]. 中国:ZL 201510242804.7, 2015⁃07⁃29.
14 Surblys V , Sokolovskij E . Research of the vehicle brake testing efficiency[J]. Procedia Engineering, 2016, 134:452⁃458.
15 万振, 高峰, 丁靖, 等 . 多轴车制动的动力学模型及制动性能分析[J]. 中国机械工程, 2008, 19(3): 365⁃369.
Wan Zhen , Gao Feng , Ding Jing , et al . Dynamics model and braking performance analysis of multi⁃axle vehicle[J]. China Mechanical Engineering, 2008, 19(3): 365⁃369.
16 党潇正, 张连洪, 周良生, 等 . 多轴汽车负荷分配的建模验证与计算的研究[J]. 汽车工程, 2014, 36(9): 1122⁃1126.
Dang Xiao⁃zheng , Zhang Lian⁃hong , Zhou Liang⁃sheng , et al . A research on the modeling, verification and calculation of load distribution for multi⁃axle vehicles[J]. Automotive Engineering, 2014, 36(9): 1122⁃1126.
17 王宣锋, 梁迎春, 黄朝胜, 等 . 超静定多轴牵引车制动试验载荷参数的优化[J].吉林大学学报:工学版, 2011, 41(2): 316⁃320.
Wang Xuan⁃feng , Liang Ying⁃chun , Huang Chao⁃sheng , et al . Load parameter optimization of brake test on statically indeterminate multi⁃axle tractor[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(2): 316⁃320.
18 刚宪约, 王登峰, 苏学军, 等 . 基于位移法的多轴汽车轮胎载荷计算方法的研究[J]. 汽车工程, 2012, 34(1): 72⁃75.
Xian⁃yue Gang , Wang Deng⁃feng , Su Xue⁃jun , et al . A study on the tire load calculation for multi⁃axle vehicles based on displacement method[J]. Automotive Engineering, 2012, 34(1): 72⁃75.
19 Wang Xuan⁃feng , Liang Ying⁃chun , Shi Guang , et al . A study on the asynchronous brake lock⁃up of a statically indeterminate tractor with an air suspension[J]. Proceedings of the Institution of Mechanical Engineers, 2012, 226(4): 507⁃516.
20 段亮, 杨树凯, 宋传学, 等 . 某多轴商用车平衡悬架高精度建模与分析[J]. 汽车工程, 2016, 38(2): 229⁃233.
Duan Liang , Yang Shu⁃kai , Song Chuan⁃xue , et al . High⁃accuracy modeling and analysis of balanced suspension in a multi⁃axle commercial vehicle[J]. Automotive Engineering, 2016, 38(2): 229⁃233.
[1] Jing LI,Qiu⁃jun SHI,Peng LIU,Ya⁃wei HU. Neural network sliding mode control of commercial vehicle ABS based on longitudinal vehicle speed estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1017-1025.
[2] Shun YANG,Yuan⁃de JIANG,Jian WU,Hai⁃zhen LIU. Autonomous driving policy learning based on deep reinforcement learning and multi⁃type sensor data [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1026-1033.
[3] Xin CHEN,Ming LI,Xin⁃jian RUAN,Ning WANG,Jia⁃ning WANG. Investigation of vortical structures in wake of Ahmed body by delayed detached⁃eddy simulation turbulence model using immersed boundary method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1034-1042.
[4] Hua ZHOU,Zhi⁃gang YANG,Hui ZHU. Aerodynamic calculation of MIRA model correlated with wind tunnel test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1043-1053.
[5] Run⁃dong LIU,Jun MAO,Yan⁃hong XI,Hong⁃yu ZHANG,Fei PENG. Pressure pulse on windbreak impacting by cross⁃wind coupling with high⁃speed trains passing each other [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1054-1062.
[6] Guo⁃feng QIN,Jing⁃xin NA,Wen⁃long MU,Wei TAN,Jian⁃ze LUAN,Hao SHEN. Degradation failure of adhesively bonded CFRP/aluminum alloy subjected to high temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1063-1071.
[7] Ji⁃qing CHEN,Meng⁃meng LIU,Feng⁃chong LAN. Experiment on overcharge safety of NCM battery and battery pack [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1072-1080.
[8] CHANG Cheng,SONG Chuan-xue,ZHANG Ya-ge,SHAO Yu-long,ZHOU Fang. Minimizing inverter capacity of doubly-fed machine driving electric vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1629-1635.
[9] XI Li-he,ZHANG Xin,SUN Chuan-yang,WANG Ze-xing,JIANG Tao. Adaptive energy management strategy for extended range electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1636-1644.
[10] HE Ren,YANG Liu,HU Dong-hai. Design and analysis of refrigeration system supplied by solar auxiliary power of refrigerator car [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1645-1652.
[11] NA Jing-xin,MU Wen-long,FAN Yi-sa,TAN Wei,YANG Jia-zhou. Effect of hygrothermal aging on steel-aluminum adhesive joints for automotive applications [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1653-1660.
[12] LIU Yu-mei,LIU Li,CAO Xiao-ning,XIONG Ming-ye,ZHUANG Jiao-jiao. Construction on collision avoidance model of bogie dynamic simulation test bench [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1661-1668.
[13] ZHAO Wei-qiang, GAO Ke, WANG Wen-bin. Prevention of instability control of commercial vehicle based on electric-hydraulic coupling steering system [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1305-1312.
[14] SONG Da-feng, WU Xi-tao, ZENG Xiao-hua, YANG Nan-nan, LI Wen-yuan. Life cycle cost analysis of mild hybrid heavy truck based on theoretical fuel consumption model [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1313-1323.
[15] ZHU Jian-feng, ZHANG Jun-yuan, CHEN Xiao-kai, HONG Guang-hui, SONG Zheng-chao, CAO Jie. Design modification for automotive body structure based on seat pull safety performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1324-1330.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!