Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1992-2001.doi: 10.13229/j.cnki.jdxbgxb20180816

Previous Articles     Next Articles

Performance analysis and lightweight design of 36MnVS4 fracturesplitting connecting rod

Zhou SHI1,2(),Shu-qing KOU1,2()   

  1. 1. College of Materials Science and Engineering, Jilin University, Changchun 130022, China
    2. Rolling Forging Institute, Jilin University, Changchun 130022, China
  • Received:2018-08-05 Online:2019-11-01 Published:2019-11-08
  • Contact: Shu-qing KOU E-mail:shizhou2023@163.com;Kousq@jlu.edu.cn

Abstract:

Compared with the first-generation of fracture-splitting material C70S6, the tensile and yield strengths of the new material 36MnVS4 are significantly improved. In order to reduce the weight of the connecting rod to meet the requirements of the engine's low energy consumption and low vibration, the structure of the 36MnVS4 connecting rod is improved. Based on the design of the original C70S6 connecting rod structure, the high-strength steel 36MnVS4 is used instead. Three-dimensional inverse reconstruction of fracture surface of C70S6 and 36MnVS4 connecting rods are conducted, and an effective analysis model of connecting rods is established. The fatigue strength analysis by finite element simulation shows that the fatigue life and safety factor of the 36MnVS4 connecting rod are significantly higher than that of C70S6 connecting rod, and there is sufficient safety reserve for lightweight improvement. With the constraints of connecting rod strength and stiffness, the structural design of the 36MnVS4 connecting rod is improved that the mass of the connecting rod is reduced by 21%.

Key words: materials synthesis and processing technology, connecting rod fracture-splitting, 36MnVS4, reverse reconstruction, fatigue performance, lightweight design

CLC Number: 

  • TG406

Fig.1

Optical microstructure of the tested steels"

Fig.2

Material true stress and strain curves"

Fig.3

Connecting rod structure and dimension"

Fig.4

Fracture surface morphology"

Fig.5

Point cloud data"

Fig.6

Fracture surface after fitting"

Fig.7

Three dimensional model of connecting rod"

Fig.8

Load of connecting rod (a)最大拉伸工况 (b)最大压缩工况"

Fig.9

Fatigue life of connecting rods (a)C70S6 (b)36MnVS4"

Fig.10

Safety factor distribution of connecting rods (a)C70S6 (b)36MnVS4"

Table 1

Working condition and Optimization parts"

连杆区域 危险工况 潜在失效形式 优化措施
连杆小头 最大惯性力工况 疲劳失效、孔径变形 优化连杆小头截面的宽度及几何形状
连杆大头 最大惯性力工况 疲劳失效、大头孔变形 优化连杆大头截面的宽度、厚度及连杆螺栓孔周围加强筋的几何形状
连杆杆身 最大爆压力工况 杆身失稳 优化连杆杆身截面形状以及杆身与大、小头孔连接处结构
杆身与大、小头过渡处 最大爆压力工况 应力集中造成断裂 杆身与大、小头孔过渡区域圆弧

Fig.11

Small head structure (a)普通结构 (b)楔形结构"

Fig.12

Effects of α and X on the strength and stiffness"

Fig.13

Comparison of shaft structure before and after optimization"

Fig.14

Shaft deformation"

Fig.15

Size comparison of large head structure"

Fig.16

Deformation of big head hole"

Fig.17

Big end stress distribution"

Fig.18

Curve of stress change along the path"

Fig.19

Comparison of 36MnVS4 connecting rod structure before and after optimization"

Fig.20

Connecting rod fatigue life and safety factor distribution"

1 Kou Shu-qing , Shi Zhou , Song Wei-feng . Fracture-splitting processing performance study and comparison of the C70S6 and 36MnVS4 connecting rods[J]. SAE International, 2018, 11(4): 463-474.
2 Shi Zhou , Kou Shu-qing . Analysis of quality defects in the fracture surface of fracture splitting connecting rod based on three-dimensional crack growth[J]. Results in Physics, 2018, 10: 1022-1029.
3 Bariani P F , Bruschi S . Modelling the forging and post-forging cooling of C70S6 conrods[J]. Journal of Materials Processing Technology, 2005, 2/3(167): 529-535.
4 Ozkara, Isa M , Murat B . Optimization of thixoforging parameters for C70S6 steel connecting rods[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 5020-5029.
5 Aksoy Z , Ozdemir Z , Ozdemir T . A metallographic examination of fracture splitting C70S6 steel used in connecting rods[J]. Marmara Universitesi Aclk Arsiv Sistemi, 2012, 24(2): 45-58.
6 张朝磊, 魏旸, 方文, 等 . 非调质钢 36MnVS4 汽车发动机连杆胀断缺陷分析[J]. 材料导报, 2018, 32(14): 2458-2461.
6 Zhang Chao-lei , Wei Yang , Fang Wen , et al . Fracture splitting defects analysis of Automotive connecting rod made of air-cooled forging steel 36MnVS4[J]. Material Review, 2018, 32(14): 2458-2461.
7 师周龙, 邵成伟, 惠卫军, 等 . 连杆用36MnVS4钢的振动性能[J]. 钢铁研究学报, 2014, 26(4):42-45.
7 Shi Zhou-long , Shao Cheng-wei , Hui Wei-jun , et al . Fracture splitting properties of steel 36MnVS4 for connecting rod[J]. Journal of Iron and Steel Research, 2014, 26(4):42-45.
8 Ji Y , Sun X , Zhao F , et al . Austenite grain growth behavior and its effects on fracture splitting performance of 36MnVS4 connecting rod for automobile engine[J]. Kovove Material-Metalic Materials, 2018, 56(2): 113-120.
9 Kim H S , Kim T G , Chung T J , et al . Fatigue characteristics of high strength C70S6 and SMA40 steels[J]. Materials Science and Engineering: A, 2010, 527(12): 2813-2818.
10 寇淑清, 宋玮峰, 石舟 . 36MnVS4 连杆裂解加工模拟及缺陷分析[J]. 吉林大学学报:工学版, 2017, 47(3): 861-868.
10 Kou Shu-qing , Song Wei-feng , Shi Zhou . Fracture splitting simulation and defect analysis of 36MnVS4 connecting rod[J]. Journal of Jilin University(Engineering and Technology Edition), 2017,47(3): 861-868.
11 Shi Zhou , Kou Shu-qing . Study on fracture-split performance of 36MnVS4 and analysis of fracture-split easily-induced defects[J]. Metals, 2018, 8(9): 696.
12 Shi Z , Kou S . Inverse reconstruction of fracture splitting connecting rod and its strength and fatigue life[J]. Journal of Failure Analysis and Prevention, 2018, 18(3): 619-627.
13 He B , Shi G , Sun G , et al . Crack analysis on the toothed mating surfaces of a diesel engine connecting rod[J]. Engineering Failure Analysis, 2013, 34: 443-450.
14 Yi C , Ming-wu W , Ling T . Fatigue strength reliability analysis of diesel connecting rod based on stochastic finite element method[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(4): 741-745.
15 Morris N , Mohammadpour M , Rahmani R , et al . Effect of cylinder deactivation on tribological performance of piston compression ring and connecting rod bearing[J]. Tribology International, 2018, 120: 243-254.
16 Wang B , Li M , Yang Y , et al . Note: Double-beveled multilayer stagger-split die for a large volume high-pressure apparatus[J]. Review of Scientific Instruments, 2015, 86(8): 086106.
17 寇淑清, 石舟 . 裂解连杆接合面三维逆向重构及其强度与刚度[J]. 吉林大学学报:工学版, 2018, 48(5): 1516-1523.
17 Kou Shu-qing , Shi Zhou . Three-dimensional reconstruction of fracture-split connecting rod joint surface and its strength and stiffness[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1516-1523.
[1] Qing-feng GUAN,Xin-wen YAO,Yang YANG,Ling-yan ZHANG,Di LIU,Chen LI,Peng LYU. Preparation and property of Cr alloying layer on TC4 after surface alloying induced by high current pulsed electron beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2002-2009.
[2] Xin LI,Yan-peng SUN,Dan WANG,Jun-xu CHEN,Zheng-wei GU,Hong XU. Finite element numerical simulation for automobile front floor forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1608-1614.
[3] Xin LI,Dan WANG,Jun⁃xu CHEN,Yan⁃peng SUN,Zheng⁃wei GU,Hong XU. Numerical simulation for handbrake fixed plate forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1258-1265.
[4] Wen⁃quan LIU,Liang YING,Hai RONG,Ping HU. Forming limit prediction of high strength steel based on damage modified M⁃K model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1266-1271.
[5] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[6] HU Zhi-qing, YAN Ting-xu, LI Hong-jie, LYU Zhen-hua, LIAO Wei, LIU Geng. Effect of cryogenic treatment on punch-shearing performance of aluminum alloy sheet [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1524-1530.
[7] CHEN Jun-fu, GUAN Zhi-ping, YANG Chang-hai, NIU Xiao-ling, JIANG Zhen-tao, Song Yu-quan. Comparison of strain ranges and mechanical properties of metal rods under tension and torsion tests [J]. 吉林大学学报(工学版), 2018, 48(4): 1153-1160.
[8] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[9] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[10] LIU Zi-wu, LI Jian-feng. Erosion damage and evaluation of remanufacturing cladding layer for impeller metals FV520B [J]. 吉林大学学报(工学版), 2018, 48(3): 835-844.
[11] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
[12] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[13] XING Hai-yan, GE Hua, LI Si-qi, YANG Wen-guang, SUN Xiao-jun. Hidden defect metal magnetic memory identification for welded joints based on fuzzy membership and maximum likelihood estimation [J]. 吉林大学学报(工学版), 2017, 47(6): 1854-1860.
[14] GU Xiao-yan, LIU Ya-jun, SUN Da-qian, XU Feng, MENG Ling-shan, GAO Shuai. Microstructures and mechanical properties of transient liquid phase diffusion bonded S355 steel/6005A aluminum alloy joint [J]. 吉林大学学报(工学版), 2017, 47(5): 1534-1541.
[15] GU Zheng-wei, ZHANG Wen-xue, LYU Meng-meng, WANG Wei, XU Hong, LI Xin. Stretch bending defect control of U-section stainless steel profile with wide flange [J]. 吉林大学学报(工学版), 2017, 47(4): 1165-1170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Fan Yong-kai,Lin Jun,Sun Tian-ze,Sui Yang-yi . Requirementdriven virtual instrument software automatic generation framework[J]. 吉林大学学报(工学版), 2007, 37(03): 606 -0610 .
[2] Zhuang Wei,Song Guang-ming,Wei Zhi-gang,Song Ai-guo. Design and implementation of a mobile node for wireless sensor networks[J]. 吉林大学学报(工学版), 2007, 37(04): 939 -943 .
[3] Zhang Hui-ping, Jiang Zhong-hao, Liu Xian-li, Lian Jian-she, Hou Xu-feng, Li Guang-yu . Electroless plating nanocrystalline Cu film on glass substrate[J]. 吉林大学学报(工学版), 2007, 37(01): 11 -16 .
[4] Liu Yao-dong, Li Guang-yu, Lian Jian-she. Effect of Al-doping on electrical and optical properties of ZnO films[J]. 吉林大学学报(工学版), 2007, 37(03): 495 -0498 .
[5] Lu Ying-rong,Yang Yin-sheng,Lv Feng . Optimal vehicle routing problem based on fuzzy clustering analysis[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 147 -151 .
[6] Wang Jing-chun,Chen Li-li,Ren Lu-quan,Gu Song-tao,Cong Qian . Experimental research on drag reduction of bionic injector needles
[J]. 吉林大学学报(工学版), 2008, 38(02): 379 -0382 .
[7] . [J]. 吉林大学学报(工学版), 2005, 35(02): 187 -0190 .
[8] Liu Xu-zong,Liu Shu-bin,Zheng Wei,An Qi . Mulitichannel synchronous serial transmission method of hit information
in Beijing spectrometer Ⅲ TOF trigger system
[J]. 吉林大学学报(工学版), 2008, 38(02): 483 -0488 .
[9] Variable structure control of flexible manipulator based on distributed parameter model . Variable structure control of flexible manipulator based on distributed parameter model[J]. 吉林大学学报(工学版), 2008, 38(04): 924 -929 .
[10] Na Jingxin, Cui An, Gan Weiyin, Hu Ping. Modified Surface Spreading Fournode Element in Onestep Inverse Forming Simulation and Its Application in Automobile Front Fender[J]. 吉林大学学报(工学版), 2006, 36(01): 57 -0061 .