Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1213-1221.doi: 10.13229/j.cnki.jdxbgxb20200347

Previous Articles    

Structure optimization of triangular groove of valve plate in axial piston pump based on SVR

Bin ZHANG(),Guo-zan CHENG,Hao-cen HONG(),Chun-xiao ZHAO,Da-peng BAI,Hua-yong YANG   

  1. State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University,Hangzhou 310027,China
  • Received:2020-05-12 Online:2021-07-01 Published:2021-07-14
  • Contact: Hao-cen HONG E-mail:zbzju@zju.edu.cn;honghaocen@163.com

Abstract:

In order to optimize the outlet dynamic characteristics of the axial piston pump, a method based on support vector regression machine (SVR) is proposed to optimize the triangular groove of the valve plate. First, the outlet characteristics of the axial piston pump are modeled. The accuracy and feasibility of the simulation model are verified through experiments. The error between the experiment and simulation results is 0.31%, which proves that the theoretical model is in good agreement with the test. Second, the sample data under different conditions of triangular groove structures are obtained through simulation. Based on the SVR model, the corresponding relationship between the outlet flow pulsation and the depth and width angles was found out, and the optimal solutions of the depth and width angles are obtained as 11.2° and 51.7° respectively. Finally, under the same working condition, the optimized calculation results of the triangular groove structure are compared and analyzed. The results show that the flow pulsation after the optimization of the pump is 1.87% lower than that before the optimization, so as to shorten the development cycle and cost of new product.

Key words: turn and control of fluid, axial piston pump, flow pulsation, triangle groove, support vector regression(SVR), parameter optimization

CLC Number: 

  • TH322

Fig.1

Movement relation of axial piston pump"

Fig.2

Structure of valve plate"

Fig.3

Single plunger theoretical fluid model"

Fig.4

Structure of simulation program"

Fig.5

Pump-pipeline-valve hydraulic system"

Fig.6

Structure of test system in the whole pump model"

Fig.7

3D model of experiment[14]"

Fig.8

Experiment table of the axial piston pump[14]"

Fig.9

Simulation and test curves of outlet pressure in the axial piston pump"

Fig.10

Simulation and test curves of outlet flow in the axial piston pump"

Fig.11

Structure of support vector regression machine"

Fig.12

Main ideas of support vector regression machine"

Table 1

Basic parameters of L10V71 axial piston pump"

基本参数数值单位
最高压力35MPa
额定压力28MPa
额定转速1500r/min
理论流量106.5L/min
排量71mL
配流盘腰形槽包角134°
柱塞腔出口槽包角29°
腰型槽弧段包角6°
配流盘错配角1.5°
斜盘倾角17.23°
柱塞直径20mm
配流盘内封油内半径28.6mm
配流盘内封油外半径36.5mm
配流盘外封油内半径44.5mm
配流盘外封油外半径52.5mm
柱塞个数9-
节流系数0.74-
油液密度876kg/m3
油液黏性0.048kg/(m·s)
油液体积弹性模量1.7×109Pa
泵工作转速1300r/min
泵的容积效率0.972-

Fig.13

Variation of pump outlet flow in different width-angle (when depth-angle is 14°)"

Fig.14

Pump outlet pulsation in different width-angle (when depth-angle is 14°)"

Fig.15

Variation of pump outlet flow in different depth- angle (when width-angle is 60°)"

Fig.16

Pump outlet pulsation in different depth-angle (when width-angle is 60°)"

Fig.17

Optimization process of depth-angle and width-angle"

Fig.18

Comparison of real value and model value"

Fig.19

Results of model optimization"

Fig.20

Comparison curves of initial structure and optimized results"

Table 2

Optimum solutions"

深度角/(°)宽度角/(°)流量脉动率/%
优化前14.060.015.79
优化后11.251.713.92
1 张静,谢世聪,杨馥霖,等. 基于PumpLinx柱塞泵配流盘三角槽结构的优化[J]. 液压气动与密封, 2019, 39(12): 14-19.
Zhang Jing, Xie Shi-cong, Yang Fu-lin, et al. The optimization of axis pump valve plate triangular groove structure based on pumpLinx[J]. Hydraulics Pneumatics & Seals, 2019, 39(12): 14-19.
2 马吉恩. 轴向柱塞泵流量脉动及配流盘优化设计研究[D]. 杭州:浙江大学机械工程学院, 2009.
Ma Ji-en. Study on flow ripple and valve plate optimization of axial piston pump[D]. Hangzhou: School of Mechanical Engineering, Zhejiang University, 2009.
3 杨华勇,马吉恩,徐兵. 轴向柱塞泵流体噪声的研究现状[J]. 机械工程学报, 2009, 45(8): 71-79.
Yang Hua-yong, Ma Ji-en, Xu Bing. Research status of axial piston pump fluid-borne noise[J]. Journal of Mechanical Engineering, 2009, 45(8): 71-79.
4 邓海顺,黄坤,王传礼,等. 平衡式两排轴向柱塞泵缸体倾覆力矩[J]. 吉林大学学报:工学版, 2015, 45(5): 1468-1473.
Deng Hai-shun, Huang Kun, Wang Chuan-li, et al. Overturning moment of cylinder of balanced two-ring axial piston pump[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5): 1468-1473.
5 潘阳,李毅波,黄明辉,等. 双联轴向柱塞泵配流盘优化与流量脉动特性分析[J]. 农业机械学报, 2016, 47(4): 391-398.
Pan Yang, Li Yi-bo, Huang Ming-hui, et al. Valve plate improvement and flow ripple characteristic analysis for double compound axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 391-398.
6 童水光,王相兵,钟崴,等. 基于虚拟样机技术的轴向柱塞泵动态特性分析[J]. 机械工程学报, 2013, 49(2): 174-182.
Tong Shui-guang, Wang Xiang-bing, Zhong Wei, et al. Dynamic characteristics analysis on axial piston pump based on virtual prototype technology[J]. Journal of Mechanical Engineering, 2013, 49(2): 174-182.
7 Xu B, Ye S, Zhang Jun-hui. Flow ripple reduction of an axial piston pump by a combination of cross-angle and pressure relief grooves: analysis and optimization[J]. Journal of Mechanical Science and Technology, 2016, 30(6): 2531-2545.
8 钟鸣. A4V型轴向柱塞泵的动态特性分析[D]. 哈尔滨:哈尔滨工业大学机电工程学院, 2014.
Zhong Ming. Analysis of the dynamic characteristics of A4V axial piston pump[D]. Haerbin: School of Electrical and Mechanical Engineering, Harbin Institute of Technology, 2014.
9 Hong Hao-cen, Zhang Bin, Yu Min, et al. Analysis and optimization on U-shaped damping groove for flow ripple reduction of fixed displacement axial-piston pump[J]. International Journal of Fluid Machinery and Systems, 2020, 13(1): 126-135.
10 申屠胜男,阮健,钱家圆,等. 2D泵流动特性与配流窗口优化分析[J]. 农业机械学报, 2019, 50(12): 403-410.
Shentu Sheng-nan, Ruan Jian, Qian Jia-yuan, et al. Optimization analysis of flow characteristic and distribution window of 2D pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(12): 403-410.
11 郝希阳,王玉林,耿超,等. 轴向柱塞泵配流盘阻尼槽的模拟分析[J]. 农业装备与车辆工程, 2018, 56(7): 48-51.
Hao Xi-yang, Wang Yu-lin, Geng Chao,et al. Study on damping groove characteristics of axial plunger pump[J]. Agricultural Equipment & Vehicle Engineering, 2018, 56(7): 48-51.
12 王安麟,吴小锋,马博,等.柱塞泵配流结构与流动特性的动态响应关系[J]. 同济大学学报:自然科学版, 2011,39(4): 586-590.
Wang An-lin, Wu Xiao-feng, Ma Bo, et al. Dynamic response relationship between swashplate's structural parameters of piston pump and hydrodynamics features[J]. Journal of Tongji University (Natural Science), 2011, 39(4): 586-590.
13 李鑫, 王少萍,黄伯超. 航空柱塞泵流量脉动仿真分析与结构优化[J]. 兰州理工大学学报, 2010, 36(3): 60-64.
Li Xin, Wang Shao-ping, Huang Bo-chao. Simulation analysis of flow fluctuation in aviation piston pump and its structure optimization[J]. Journal of Lanzhou University of Technology, 2010, 36(3): 60-64.
14 王毅翔. 轴向柱塞泵配流盘阻尼槽特性分析及优化设计[D]. 杭州:浙江大学机械工程学院, 2014.
Wang Yi-xiang. Study on damping groove characteristics and optimization of axial piston pump[D]. Hangzhou: School of Mechanical Engineering, Zhejiang University, 2014.
[1] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[2] LI Jing, DING Ming-hui, LI Li-gang, CHEN Li-jun. Dynamic characteristics analysis and optimization of air spring based on the piston shape [J]. 吉林大学学报(工学版), 2018, 48(2): 355-363.
[3] WANG Jia-yi, LIU Xin-hui, WANG Xin, QI Hai-bo, SUN Xiao-yu, WANG Li. Mechanism and inhibition for displacement shifting impact on digital secondary component [J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[4] MA Kai, GAO Ji-dong, YAN Lei, XU Tao. Dummy material parameter optimization based on calibration experiment of chest pressure in collision [J]. 吉林大学学报(工学版), 2017, 47(5): 1498-1503.
[5] HUANG Xuan, GUO Li-hong, LI Jiang, YU Yang. Target threat assessment based on BP neural network optimized by modified particle swarm optimization [J]. 吉林大学学报(工学版), 2017, 47(3): 996-1002.
[6] WANG Li, LIU Xin-hui, WANG Xin, CHEN Jin-shi, LIANG Yi-jie. Shifting strategy of digital hydraulic transmission system for wheel loader [J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[7] ZHANG Min, LI Song-jing, CAI Shen. Microfluidic liquid color-changing glasses controlled by valveless piezoelectric micro-pump [J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[8] GU Shou-dong, LIU Jian-fang, YANG Zhi-gang, JIAO Xiao-yang, JIANG Hai, LU Song. Characteristics of solder paste jetting valve driven by piezostack [J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[9] LI Shen-long, LIU Shu-cheng, XING Qing-kun, ZHANG Jing, LAI Yu-yang. Clutch friction pair motion effect caused by oil flow based on LBM-LES [J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[10] YUAN Zhe, XU Dong, LIU Chun-bao, LI Xue-song, LI Shi-chao. Strength analysis of hydraulic retarder blade based on the process of thermal-fluid structure interaction [J]. 吉林大学学报(工学版), 2016, 46(5): 1506-1512.
[11] YANG Hua-yong, WANG Shuang, ZHANG Bin, HONG Hao-cen, ZHONG Qi. Development and prospect of digital hydraulic valve and valve control system [J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
[12] SHEN Wei, ZHANG Di-jia, SUN Yi, JIANG Ji-hai. Control design of the swash plate angle for hydraulic pump/motor based on FSMI method [J]. 吉林大学学报(工学版), 2016, 46(5): 1513-1519.
[13] ZHAO Cun-ran, LIU Wei, JIANG Ji-hai, SHAO Hui, TIAN Yong. Accelerated model of swash-plate axial piston pump [J]. 吉林大学学报(工学版), 2016, 46(4): 1124-1129.
[14] ZHANG Qin-guo, QIN Si-cheng, MA Run-da, YANG Li-guang, XI Yuan, LIU Jin-qiao. Hydraulic system thermal characteristics of loader working device [J]. 吉林大学学报(工学版), 2016, 46(3): 811-817.
[15] CHEN Jin-shi, WANG Guo-qiang, GONG Xun, WANG Xin, WANG Li, DU Yang. Characteristics of cartridge one-way relief valve [J]. 吉林大学学报(工学版), 2016, 46(2): 465-470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!