Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2128-2136.doi: 10.13229/j.cnki.jdxbgxb20200648

Previous Articles    

Dynamic features of transition section between improved soil and A⁃filled of heavy⁃haul railway

Yong-hui SHANG1,2(),Lin-rong XU1,3(),Wei-zheng LIU1,Yu CAI1   

  1. 1.School of Civil Engineering,Central South University,Changsha 410075,China
    2.Institute of Architecture and Engineering,Huanghuai University,Zhumadian 463000,China
    3.National Engineering Laboratory for High Speed Railway Construction,Central South University,Changsha 410075,China
  • Received:2020-08-24 Online:2021-11-01 Published:2021-11-15
  • Contact: Lin-rong XU E-mail:syhsrsci@sina.com;Irxu@csu.edu.com

Abstract:

In order to analyze the dynamic features of the special transition section of different types of filling adjacent to fill, considering the background of Haoji (Haole Baoji-Jian) heavy-haul railway engineering, the method, combining the field excitation test and numerical simulation, was used to reveal the difference of dynamic features between transverse and longitudinal of the transition section subgrade between improved soil and group A filler. The results show that under the same load condition, the dynamic response of the cross section of the A-filled subgrade is greater than that of the modified expansive soil, which is specifically manifested by the increase of dynamic stress by 5~8% and acceleration by 40~50%. When the trains with a speed of 120 km/h and an axle load of 25~30 t, the dynamic response of the longitudinal road surface at the junction of the transition section increases by 0.8~13%, and to certain extent it is affected by the direction of the vehicle. The research results can provide a theoretical basis for the fine construction and maintenance of the filling transition section of heavy-haul railway.

Key words: highway & railway engineering, filling transition section, dynamic features, excitation test, numerical simulation

CLC Number: 

  • U231.1

Table 1

Comparison of engineering properties ofexpansive soil before and after improvement"

指标

类别

指标参数

天然

土样

水泥掺量
3%4%5%

自由膨胀率66322823
有荷膨胀率(25 kPa)6.80.10.06<0
有荷膨胀率(50 kPa)6.7<0<0<0
膨胀力/kPa12914101
收缩系数0.910.730.620.52
缩限/%10.210.211.911.2

黏聚力/kPa45183201291
内摩擦角Φ21.424.633.235.5

7 d饱和无侧限

抗压强度/kPa

4486610181170

水稳

系数

压实度0.900.180.810.840.83
压实度0.950.250.850.880.89

Table 2

Comparison of swelling index"

相关指标天然土样掺量3%掺量4%掺量5%
石灰水泥石灰水泥石灰水泥
自由膨胀率66273024272123
有荷膨胀率(25 kPa)6.8<00.1<00.06<0<0
有荷膨胀率(50 kPa)6.7<0<0<0<0<0<0
膨胀力/kPa129121451011

Table 3

Comparison of strength indexes"

相关指标天然土样掺量3%掺量4%掺量5%
石灰水泥石灰水泥石灰水泥

饱和无侧限

强度/kPa

37308335477512786852
黏聚力C42124139189204231244
内摩擦角Φ20.624.627.630.231.837.541.8

Table 4

Comparison of swelling index"

填料类别围压/kPa临界动应力/kPa
范围区间平均值
3%水泥改良土15151.2~185.7168.45
30157.5~203.5180.50
60182.3~233.1207.70
5%水泥改良土15142.5~208.1175.30
30148.3~233.5190.90
60202.5~249.7226.10
A组粗粒填料2015100~125112.5
30100~125112.5
60125~150137.5

Fig.1

Longitudinal diagram of filler transition section"

Fig.2

Cross-sectional layout of test components"

Fig.3

Component burying and testing"

Fig.4

Acceleration curve along the depthof the subgrade"

Fig.5

Dynamic stress curve along thedepth of the subgrade"

Table 5

Statistics of dynamic and staticstress (DK948+270)"

深度/m静应力/kPa轴重为30 t、速度为120 km/h
动应力/kPa动静应力比
017.7116.296.57
0.630.072.232.41
0.935.448.561.38
2.564.228.030.44
3.582.217.520.21
4.5100.212.890.13

Fig.6

Simplified mechanical model of train-ballasted track-subgrade-foundation"

Fig.7

Numerical model of train-ballastedtrack-subgrade -foundation"

Table 6

Reference data for numerical calculation"

类别重度/(kN·m-3

弹性模量/

MPa

泊松比黏聚力/kPa摩擦角/(°)
C8078.27210 0000.31--
钢轨78.5210 0000.31--
轨枕2721 0000.17--
道床21.33000.30--
A组填料19.52400.25--
5%改良土18.22100.2824441.8
3%改良土18.12000.2813927.6
地基土17.6380.324220.6

Fig.8

Dynamic stress curve of the subgrade surface"

Fig.9

Dynamic stress curve along the depth of thesubgrade obtained by different methods"

Fig.10

Variation curve of longitudinal dynamic stress and acceleration of the subgrade"

1 肖世伟, 雷长顺. 重载铁路路基荷载特征和路基动力响应分析[J]. 铁道工程学报, 2014, 31(4): 51-56.
Xiao Shi-wei, Lei Chang-shun. Loading characteristics and dynamic response analysis of subgrade for heavy-haul railway[J]. Journal of Railway Engineering Society, 2014, 31(4):51-56.
2 冷伍明, 梅慧浩, 聂如松, 等.重载铁路路基足尺模型试验研究[J]. 振动与冲击, 2018, 37(4):1-6, 18.
Leng Wu-ming, Mei Hui-hao, Nie Ru-song, et al. Full-scale model test of heavy-haul railway subgrade[J]. Journal of Vibration and Shock, 2018, 37(4):1-6, 18.
3 李鹏. 重载铁路路基动力响应与长期累积变形特性[D].哈尔滨: 哈尔滨工业大学土木工程学院, 2018.
Li Peng. Dynamic response and long-term cumulative deformation characteristics of heavy haul railway subgrade[D]. Harbin: School of Civil Engineering, Harbin Institute of Technology, 2018.
4 商拥辉, 徐林荣, 蔡雨, 等.重载铁路循环动载下水泥改良膨胀土路基动力特性[J]. 中国铁道科学, 2019, 40(6):19-29.
Shang Yong-hui, Xu Lin-rong, Cai Yu, et al. Dynamic deformation of cement-stabilized expansive soil subgrade under cyclic dynamic load of heavy haul railway[J]. China Railway Science, 2019, 40(6):19-29.
5 Fryba L. History of winkler foundation[J]. Vehicle System Dynamics,2007, 24:7-12.
6 Kenney J T. Steady-state vibration of beam on elastic foundation for moving load[J]. Journal of Applied Mechanics, 1954, 21(4):359-364.
7 Matsuura A. Simulation for analyzing direct derailment limit of running vehicle on oscillating tracks[J]. Doboku Gakkai Ronbunshu, 1998,1998(591):19-28.
8 翟婉明, 赵春发, 夏禾, 等.高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学:技术科学, 2014, 44(7):645-660.
Zhai Wan-ming, Zhao Chun-fa, Xia He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Science China: Technical, 2014, 44(7):645-660.
9 陈云敏, 边学成.高速铁路路基动力学研究进展[J]. 土木工程学报, 2018, 51(6):1-13.
Chen Yun-min, Bian Xue-cheng. The review of high-speed railway track foundation dynamics[J]. China Civil Engineering Journal, 2018, 51(6):1-13.
10 Qiu Ming-ming, Yang Guo-lin, Shen Quan, et al. Dynamic behavior of new cutting subgrade structure of expensive soil under train loads coupling with service environment[J]. Journal of Central South University, 2017, 24(4):875-890.
11 吕文强, 罗强, 刘钢, 等.重载铁路路基基床结构分析及设计方法[J]. 铁道学报, 2016, 38(4):74-81.
Lv Wen-qiang, Luo Qiang, Liu Gang, et al. Structural analysis and design method for subgrade bed of heavy-haul railway[J]. Journal of China Railway Society, 2016, 38(4):74-81.
12 韩博文, 冯怀平, 应志超, 等.振动荷载作用下浸水过程对重载铁路基床变形特性影响研究[J]. 振动与冲击, 2019, 38(1):221-228.
Han Bo-wen, Feng Huai-ping, Ying Zhi-chao, et al. Study on influence of soaking process on deformation characteristics of heavy-haul railway subgrade under vibration load[J]. Journal of Vibration and Shock, 2019, 38(1):221-228.
13 刘晓红, 杨果林, 方薇. 高铁无碴轨道路堑基床换填厚度与动力稳定[J]. 岩石力学与工程学报, 2011, 30():3534-3538.
Liu Xiao-hong, Yang Guo-lin, Fang Wei. Replacement thickness and dynamic stability of cutting bed under ballstless track of high-speed railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup.2):3534-3538.
14 董亮, 赵成刚, 蔡德钩, 等.高速铁路无砟轨道路基动力特性数值模拟和试验研究[J]. 土木工程学报, 2008,41(10):81-86.
Dong Liang, Zhao Cheng-gang, Cai De-gou, et al. Experiment validation of a numerical model for prediction of the dynamic response of ballastless of subgrade of high-speed railway[J]. China Civil Engineering Journal, 2008,41(10):81-86.
15 徐旸, 高亮, 蔡小培, 等.基于激光扫描法的铁路道砟级配对道床动力特性影响的离散元研究[J]. 振动与冲击, 2017, 36(5):127-133, 156.
Xu Yang, Gao Liang, Cai Xiao-pei, et al. Influences of ballast gradation on railway bed dynamic characteristics based on laser scanning and discrete element method[J]. Journal of Vibration and Shock, 2017, 36(5):127-133, 156.
16 . 铁路线路设计规范[S].
17 Shang Yong-hui, Xu Lin-rong, Huang Ya-li, et al. Experimental study on the dynamic features of cement-stabilized expansive soil as subgrade filling of Heavy-haul railway[J]. Journal of Engineering Science and Technology Review, 2017, 10(6):136-145.
18 周葆春,孔令伟,郭爱国. 石灰改良膨胀土的应力-应变-强度特征与本构描述[J]. 岩土力学,2012,33(4):999-1005.
Zhou Bao-chun, Kong Ling-wei, Guo Ai-guo. Stress-strain- strength behaviour and constitutive description of lime-treated expansive soil[J]. Rock and Soil Mechanics, 2012, 33(4):999-1005.
19 汪明武, 秦帅, 李健, 等.合肥石灰改良膨胀土的非饱和强度试验研究[J]. 岩石力学与工程学报, 2014, 33():4233-4238.
Wang Ming-wu, Qin Shuai, Li Jian, et al. Strength of unsaturated lime-treated expansive clay in Hefei[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup.2):4233-4238.
20 梅慧浩, 冷伍明, 聂如松, 等.粗粒土的动力行为特征及永久变形特性研究[J]. 华中科技大学学报:自然科学版, 2019, 47(9):113-119.
Mei Hui-hao, Leng Wu-ming, Nie Ru-song, et al. Study on dynamic behavior and permanent deformation characteristics of coarse-grained soil[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2019, 47(9):113-119.
[1] Yan-feng JIA,Da-yi QU,Lu LIN,Rong-han YAO,Xiao-long MA. Coordinated speed control of connected mixed traffic flow based on trajectory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2051-2060.
[2] Zong-wei YAO,Xu-dong GAO,Gang LIU,Qiu-shi BI. Research on working performance of vertical screw stirring mill based on numerical simulations [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1642-1650.
[3] Zheng-lei YU,Li-xin CHEN,Ze-zhou XU,Ren-long XIN,Long MA,Jing-fu JIN,Zhi-hui ZHANG,Shan JIANG. Analysis of mechanical characteristics and recovery characteristics of bionic protective structures based on additive manufacturing [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1540-1547.
[4] Zheng-lei YU,Ren-long XIN,Li-xin CHEN,Yi-ning ZHU,Zhi-hui ZHANG,Qing CAO,Jing-fu JIN,Jie-liang ZHAO. Load bearing characteristics of honeycomb protection structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1140-1145.
[5] Ya-feng GONG,Yun-ze PANG,Bo WANG,Guo-jin TAN,Hai-peng BI. Mechanical properties of new prefabricated box culvert structure based on road conditions in Jilin Province [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 917-924.
[6] Chang SU,Ying HAN,Ying-chao ZHANG,Zhen-hua MIAO. Influence performance with wheel spoke design parameters of vehicle aerodynamic [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 107-113.
[7] Zheng-wei GU,Lin CHEN,Li-hui ZHAO,Hong XU,Xin LI,Ge YU. Simulation of stamping process of some reinforcement plate below windows of railway vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 504-511.
[8] Xin CHEN,Ning WANG,Chuan-liang SHEN,Xiao FENG,Chang-hai YANG. Effect of rearview mirror modeling on aerodynamic noise of front window [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 426-436.
[9] Wei-ping SHI,Xu ZHAO,Xing-jun HU,Tian-ming YU,Bo-wen LIU,Yan DUAN. Design and numerical simulation of water restriction device AICD for natural gas exploitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1986-1991.
[10] Ya-feng GONG,Bo WANG,Guo-jin TAN,Li-min ZHANG,Wen-ding WU,Hai-peng BI. Comparative analysis of mechanical characteristics of two typical fabricated culverts in Jilin [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1865-1870.
[11] Zhuo YI,Wen-zhi FU,Ming-zhe LI. Numerical simulation and experiment on double⁃layered split ultrahigh pressure die [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1593-1599.
[12] Xin LI,Yan-peng SUN,Dan WANG,Jun-xu CHEN,Zheng-wei GU,Hong XU. Finite element numerical simulation for automobile front floor forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1608-1614.
[13] Hua ZHOU,Zhi⁃gang YANG,Hui ZHU. Aerodynamic calculation of MIRA model correlated with wind tunnel test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1043-1053.
[14] Xue⁃guang ZHANG,Ming⁃meng JIA,Chun⁃guo LIU,Guang⁃zhong HE. Trajectory design and FE simulation for profile stretch bending based on incremental control method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1272-1279.
[15] Xin LI,Dan WANG,Jun⁃xu CHEN,Yan⁃peng SUN,Zheng⁃wei GU,Hong XU. Numerical simulation for handbrake fixed plate forming [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1258-1265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!