Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (11): 2712-2717.doi: 10.13229/j.cnki.jdxbgxb20211263

Previous Articles    

Anomaly data mining algorithm in social network based on deep integrated learning

Li-can DAI1(),Xiang DAI1,Ying CUI1,Yong-chao WEI2   

  1. 1.The Second Laboratory,Southwest China Institute of Electronic Technology,Chengdu 610036,China
    2.Scientific Research Office,Civil Aviation Flight University of China,Guanghan 618307,China
  • Received:2021-11-23 Online:2022-11-01 Published:2022-11-16

Abstract:

In the current design process of social network abnormal data mining algorithm, social network data features are not extracted, resulting in low abnormal data detection rate and long detection running time. Therefore, a social network abnormal data mining algorithm based on deep integrated learning is designed. Mining social network data, extracting social network data features according to the data mining results, using the extracted data features to build a deep integrated learning model, using the model to predict abnormal data, so as to obtain abnormal social network data, and realize abnormal social network data mining. Experimental results show that the algorithm has high accuracy and effectiveness and good practical application effect through abnormal data detection rate test and abnormal data detection running time test.

Key words: deep integrated learning, social network, abnormal data mining, feature extraction

CLC Number: 

  • TP748

Fig.1

Test of detection effect of social network abnormal data"

Fig.2

Run time test of abnormal data detection"

1 曾治安, 姚树友, 郑晓玲, 等. 基于移动互联网技术的继电保护设备智能运维管理模式探讨[J]. 电力系统保护与控制, 2019, 47(16): 80-86.
Zeng Zhi-an, Yao Shu-you, Zheng Xiao-ling, et al. Discussion on intelligent operation and maintenance management mode of relay protection equipment based on mobile internet technology[J]. Power System Protection and Control, 2019, 47(16): 80-86.
2 曾小华, 宋美洁, 宋大凤, 等. 基于车联网信息的公交客车行驶工况数据处理方法[J].吉林大学学报: 工学版, 2021, 51(5): 1692-1699
Zeng Xiao-hua, Song Mei-jie, Song Da-feng, et al. Data processing method of bus driving cycle based on vehicular network information[J]. Journal of Jilin University(Engineering and Technology Edition), 2021,51(5): 1692-1699.
3 姜斌祥, 张子枫, 杨学鹏, 等. 毒品检验区块链数据共享融合激励算法 [J]. 吉林大学学报: 工学版, 2022, 52(5): 1117-1127.
Jiang Bin-xiang, Zhang Zi-feng, Yang Xue-peng, et al.Data sharing fusion excitation algorithm of drug inspection blockchain[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1117-1127.
4 金心宇, 谢慕寒, 孙斌. 基于半张量积压缩感知的粮情信息采集[J].吉林大学学报: 工学版, 2021, 51(1): 379-385
Jin Xin-yu, Xie Mu-han, Sun Bin. Grain information compressed sensing based on semi-tensor product approach[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 379-385.
5 岳少博, 谢利德, 王清河, 等. 多媒体网络负面信息数据检测仿真研究[J]. 计算机仿真, 2019, 36(1): 226-229, 386.
Yue Shao-bo, Xie Li-de, Wang Qing-he, et al. Research on the simulation of negative information data detection in multimedia networks[J]. Computer Simulation, 2019, 36(1): 226-229, 386.
6 马莉莉, 刘江平. 基于数据挖掘的光纤通信网络异常数据检测研究[J]. 应用光学, 2020, 41(6): 1305-1310.
Ma Li-li, Liu Jiang-ping. Research on abnormal data detection of optical fiber communication network based on data mining[J]. Journal of Applied Optics, 2020, 41(6): 1305-1310.
7 张宏, 吕悦晶. 基于大数据挖掘技术的车载自组织网络状态异常检测[J]. 汽车技术, 2019(10): 48-52.
Zhang Hong, Lu Yue-jing. Research on abnormal state detection of VANET based on big data mining technology[J]. Automobile Technology, 2019(10): 48-52.
8 张定祥, 张跃进. 基于改进多层次模糊关联规则的定量数据挖掘算法[J]. 计算机应用研究, 2019, 36(12): 3619-3622.
Zhang Ding-xiang, Zhang Yue-jin. Quantitative data mining algorithm based on improved multi-level fuzzy association rules[J]. Application Research of Computers, 2019, 36(12): 3619-3622.
9 刘久富, 丁晓彬, 郑锐, 等. 混沌量子粒子群的权重类条件贝叶斯网络分类器参数学习[J]. 系统工程与电子技术, 2019, 41(10): 2304-2309.
Liu Jiu-fu, Ding Xiao-bin, Zheng Rui, et al. Weighted class-conditional bayesian network classifier parameter learning of chaos quantum particle swarm[J]. Systems Engineering and Electronics, 2019, 41(10): 2304-2309.
10 吴瞻宇, 董明, 王健一, 等. 基于模糊关联规则挖掘的电力变压器故障诊断方法[J]. 高压电器, 2019, 55(8): 157-163.
Wu Zhan-yu, Dong Ming, Wang Jian-yi, et al. Fault diagnosis of power transformer based on fuzzy association rules mining[J]. High Voltage Apparatus, 2019, 55(8): 157-163.
11 刘均, 宫子栋, 吴力. 基于信息熵度量的局部线性嵌入算法[J]. 吉林大学学报:理学版, 2022, 60(1): 143-149.
Liu Jun, Gong Zi-dong, Wu Li. Local linear embedding algorithm based on information entropy measurement[J]. Journal of Jilin University(Science Edition), 2022, 60(1): 143-149.
12 蒲晓川, 黄俊丽, 祁宁, 等. 基于密度信息熵的K-means算法在客户细分中的应用[J]. 2021, 59(5): 1245-1251.
Pu Xiao-chuan, Huang Jun-li, Qi Ning, et al. Application of K-means algorithm based on density information entropy in customer segmentation[J]. Journal of Jilin University(Science Edition), 2021, 59(5): 1245-1251.
13 张宇飞, 沈瑶, 杨威, 等. 差分信息熵的网络时序型隐蔽信道检测[J]. 软件学报, 2019, 30(9): 2733-2759.
Zhang Yu-fei, Shen Yao, Yang Wei, et al. Detecting covert timing channels based on difference entropy[J]. Journal of Software, 2019, 30(9): 2733-2759.
14 李文静, 李萌, 乔俊飞. 基于互信息和自组织RBF神经网络的出水BOD软测量方法[J]. 化工学报, 2019, 70(2): 687-695.
Li Wen-jing, Li Meng, Qiao Jun-fei. Effluent BOD soft measurement based on mutual information and self-organizing RBF neural network[J]. CIESC Journal, 2019, 70(2): 687-695.
15 邹耀斌, 雷帮军, 臧兆祥, 等. 归一化互信息量最大化导向的自动阈值选择方法[J]. 自动化学报, 2019, 45(7): 1373-1385.
Zou Yao-bin, Lei Bang-jun, Zang Zhao-xiang, et al. Automatic threshold selection guided by maximizing normalized mutual information[J]. Acta Automatica Sinica, 2019, 45(7): 1373-1385.
[1] Yi-na ZHOU,Hong-li DONG,Yong ZHANG,Jing-yi LU. Feature extraction method of pipeline signals based on VMD de-noising and dispersion entropy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 959-969.
[2] Su-ming KANG,Ye-e ZHANG. Hadoop⁃based local timing link prediction algorithm across social networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 626-632.
[3] Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[4] Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279.
[5] Cai-mao LI,Shao-fan CHEN,Cheng-rong LIN,Yu-quan HOU,Hao LI. Dynamic recommendation method of virtual community knowledge based on circular knowledge map [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2385-2390.
[6] Hong-kui XU,Tong-tong JIANG,Xin LI,Bin-xiang JIANG,Yong-lei WANG. LTE uplink interference analysis combined with denoising autoencoder and extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 195-203.
[7] Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194.
[8] Yuan-hong LIU,Pan-pan GUO,Yan-sheng ZHANG,Xin LI. Feature extraction of sparse graph preserving projection based on Riemannian manifold [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2268-2279.
[9] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[10] Xiao-long ZHU,Zhong XIE. Automatic construction of knowledge graph based on massive text data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1358-1363.
[11] Xiao-hui WEI,Bing-yi SUN,Jia-xu CUI. Recommending activity to users via deep graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 278-284.
[12] Tao XU,Ke MA,Cai-hua LIU. Multi object pedestrian tracking based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 27-38.
[13] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[14] Bin LI,Xu ZHOU,Fang MEI,Shuai-ning PAN. Location recommendation algorithm based on K-means and matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1653-1660.
[15] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!