1 |
杨帆. 基于车轮力测试的车辆地面通过性关键技术研究[D]. 南京: 东南大学仪器科学与工程学院, 2016.
|
|
Yang Fan. Research on key techniques of vehicle trafficability based on wheel force test[D]. Nanjing: School of Instrument Science and Engineering, Southeast University, 2016.
|
2 |
Wong J Y, Jayakumar P, Toma E, et al. A review of mobility metrics for next generation vehicle mobility models[J]. Journal of Terramechanics, 2020, 87: 11-20.
|
3 |
李灏, 刘新全. 基于圆锥指数评估车辆机动性能综述[J]. 农业装备与车辆工程, 2011, 49(7): 16-20.
|
|
Li Hao, Liu Xin-quan. Summary of evaluating the mobility of vehicle based on cone index[J]. Agricultural Equipment & Vehicle Engineering, 2011, 49(7):16-20.
|
4 |
宁俊帅, 李军, 李灏, 等. 军用车辆机动性评估方法[J]. 兵器装备工程学报, 2009, 30(5): 49-51.
|
|
Ning Jun-shuai, Li Jun, Li Hao, et al. Military vehicle mobility evaluation methods[J]. Journal of Ordnance Equipment Engineering, 2009, 30(5): 49-51.
|
5 |
白意东, 孙凌宇, 张明路, 等. 履带机器人地面力学研究进展[J]. 机械设计, 2020, 37(10): 1-13.
|
|
Bai Yi-dong, Sun Ling-yu, Zhang Ming-lu, et al. Progress of research on terramechanics for tracked mobile robots[J]. Journal of Machine Design, 2020, 37(10): 1-13.
|
6 |
刁增祥,余建星. 军用车辆的机动性等级和模型[J]. 汽车工程, 2005, 27(3): 354-357.
|
|
Diao Zeng-xiang, Yu Jian-xing. Mobility grade and model of military vehicles[J]. Automotive Engineering, 2005, 27(3): 354-357.
|
7 |
Ahlvin R B, Haley P W. NATO reference mobility model edition II[R]. Vicksburg: USA Army Corps of Engineers Waterways Experiment Station, 1992.
|
8 |
Sohne W. Four-wheel drive or rear-wheel drive for high power farm tractors[J]. Journal of Terramechanics, 1968, 5(3): 9-28.
|
9 |
张克健. 车辆地面力学[M]. 北京: 国防工业出版社, 2002.
|
10 |
Bekker M G. Introduction to Terrain-vehicle Systems[M]. Ann Arbor,MI:University of Michigan Press,1969.
|
11 |
Rula A A, Nuttall C J. An analysis of ground mobility models (ANAMOB)[R]. Vicksburg: USA Army Corps of Engineers Waterways Experiment Station, 1971.
|
12 |
Rowland D. A review of vehicle design for soft ground operation[C]∥International Conference of the International Society for Terrain-Vehicle Systems, Vicksburg, USA, 1975:179-219.
|
13 |
Wong J Y. Terramechanics and off-road vehicles[R]. Amsterdam: Elsevier Science, 1989.
|
14 |
Wong J Y. Theory of Ground Vehicles[M]. New York: Wiley-Inter Science, 2001.
|
15 |
Lessem A, Mason G, Ahlvin R. Stochastic vehicle mobility forecasts using the NATO reference mobility model[J]. Journal of Terramechanics, 1996, 33(6): 273-280.
|
16 |
Zhou Q M, Liu X J. Analysis of errors of derived slope and aspect related to DEM data properties[J]. Journal of Computer & Geosciences, 2004, 30(4): 369-378.
|
17 |
Ishigami G, Kewlani G, Iagnemma K. Predictable mobility: a statistical approach for planetary surface exploration rovers in uncertain terrain[J]. IEEE Robotics & Automation Magazine, 2009, 16(9): 61-70.
|
18 |
Peynot T, Lui S, McAllister R, et al. Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain[J]. Journal of Field Robotics, 2014, 31(6): 969-995.
|
19 |
Gonzalez R, Jayakumar P, Iagnemma K. Stochastic mobility prediction of ground vehicles over large spatial regions: a geostatistical approach[J]. Auton Robot, 2017, 41(2): 311-331.
|
20 |
Gonzalez R, Jayakumar P, Iagnemma K. Generation of stochastic mobility maps for large-scale route planning of ground vehicles: a case study[J]. Journal of Terramechanic, 2017, 69(2): 1-11.
|
21 |
李坤伟,游雄,张欣,等. 基于多源数据的土壤越野通行性评估[J]. 测绘科学技术学报, 2018, 35(2): 206-210.
|
|
Li Kun-wei, You Xiong, Zhang Xin, et al. Evaluation of soil trafficability based on multi-source data[J]. Journal of Geomatics Science and Technology, 2018, 35(2): 206-210.
|
22 |
Ti K S, Huat B B K, Noorzaei J. A review of basic soil constitutive models for geotechnical application[J]. Electronic Journal of Geotechnical Engineering, 2009, 14(1):1-18.
|
23 |
Drucker P. Soil mechanics and plastic analysis for limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2): 157-165.
|
24 |
Sandler I S, Rubin D. An algorithm and a modular subroutine for the cap model[J]. Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(2): 173-186.
|
25 |
Grujicic M, Bell W C, Arakere G, et al. Finite element analysis of the effect of up-armouring on the off-road braking and sharp-turn performance of a high-mobility multi-purpose wheeled vehicle[J]. Journal of Automobile Engineering, 2009, 223(11): 1419-1434.
|
26 |
Ragheb H, EI-Gindy M, Kishawy H A. Multi-wheeled combat vehicle modeling on rigid and soft terrain[C]∥NDIA Ground Vehicle Systems Engineering and Technology Symposum, Modeling & Simulation, Testing and Validation (MSTV), Michigan, USA, 2013: 325-336.
|
27 |
Shoop S A, Richmond P W, Lacombe J. Overview of cold regions mobility modeling at CRREL[J]. Journal of Terramechanics, 2006, 43(1): 1-26.
|
28 |
Wright A. Tire/soil interaction modelling withing a virtual proving ground environment[D]. Berkeley: Institute of Defence and Security, University of Cranfield, 2012.
|
29 |
Ravula P, Acar G, Balachandran B. Discrete element method-based studies on dynamic interactions of a lugged wheel with granular media[J]. Journal of Terramechanics, 2021, 94: 49-62.
|
30 |
张锐,李建桥,李因武,等. 部件复杂表面影响土壤扰动行为的离散元宏细观分析[J]. 吉林大学学报: 工学版, 2009, 39(5): 1218-1223.
|
|
Zhang Rui, Li Jian-qiao, Li Yin-wu, et al. DEM macroscopic and mesoscopic analysis in disturbed behavior of soil acted by part with complex surface[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(5): 1218-1223.
|
31 |
Dasch J, Jayakumar P, Bradbury M, et al. Next-generation NATO reference mobility model (NG-NRMM)[R]. Aarhus: the NATO Science & Technology Organization, 2020.
|
32 |
Melanz D, Jayakumar P, Negrut D. Experimental validation of a differential variational inequality-based approach for handling friction and contact in vehicle/granular-terrain interaction[J]. Journal of Terramechanics, 2016, 65: 1-13.
|
33 |
Tasora A, Magnoni D, Negrut D, et al. Deformable soil with adaptive level of detail for tracked and wheeled vehicles[J]. International Journal of Vehicle Performance, 2019, 5(1): 60-76.
|
34 |
Serban R, Taylor M, Negrut D, et al. Template-based ground vehicle modeling and simulation[J]. International Journal of Vehicle Performance, 2019, 5(1):2-17.
|
35 |
Recuero A, Serban R, Peterson B, et al. A high-finitely approach for vehicle mobility simulation: nonlinear finite element tires operating on granular material[J]. Journal of Terramechanics, 2017, 72: 39-54.
|
36 |
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
|
37 |
Cundall P A. A computer model for simulating progressive large-scale movements in block rock mechanics[C]∥International Symposium on Visual Computing, Nevada, USA, 1971: 8-11.
|
38 |
Smith W, Peng H. Modeling of wheel-soil interaction over rough terrain using the discrete element method[J]. Journal of Terramechanics, 2013, 50(5/6): 277-287.
|
39 |
Negrut D, Melanz D, Mazhar H, et al. Investigating through simulation the mobility of light tracked vehicles operating on discrete granular terrain[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2013, 6(1): 369-381.
|
40 |
Wasfy T M, Wasfy H M, Peters J M. Coupled multibody dynamics and discrete element modeling of vehicle mobility on cohesive granular terrains[C]∥ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, USA, 2014: 8-13.
|
41 |
Wasfy T M, Wasfy H M, Peters J M. High-fidelity multi-body dynamics vehicle model coupled with a cohesive soil discrete element model for predicting vehicle mobility[C]∥International Conference on Multi-body Systems, Boston, USA, 2015:202-208.
|
42 |
Wasfy T M, Jayakumar P, Mechergui D, et al. Prediction of vehicle mobility on large-scale soft-soil terrain maps using physics-based simulation[J]. International Journal of Vehicle Performance, 2018, 4(4): 347-381.
|
43 |
Akinci N, Cornelis J, Akinci G, et al. Coupling elastic solids with smoothed particle hydrodynamics fluids[J]. Computer Animation and Virtual Worlds, 2013, 24(3/4): 195-203.
|
44 |
Lescoe R, El-Gindy M, Koudela K, et al. Tire-soil modeling using finite element analysis and smooth particle hydrodynamics techniques[C]∥ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada, 2010: 3-18.
|
45 |
Lescoe R, El-Gindy M, Koudela K,et al. Improvement of soil modeling in a tire-soil interaction using finite element analysis and smoothed particle hydrodynamics[J]. Mechanical Engineering, 2010(10): 3-18.
|
46 |
Sulsky D, Zhou S J, Schreyer H. Application of particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1996, 87(1/2): 236-252.
|
47 |
王宇新, 顾元宪, 孙明. 无网格MPM法在冲击载荷问题中的应用[J]. 工程力学, 2006, 23(5): 46-51.
|
|
Wang Yu-xin, Gu Yuan-xian, Sun Ming. Application of material point method to shock load problems[J]. Engineering Mechanics, 2006, 23(5): 46-51.
|
48 |
Stomakhin A, Schroedery C, Chai L, et al. A material point method for snow simulation[J]. ACM Transactions on Graphics, 2013, 32(4): 1-10.
|
49 |
Letherwood M, Gerth R, Jayakumar O, et al. Cooperative demonstration of technology next-generation NATO reference mobility model (NG-NRMM)[R]. Michigan: Collaboration Support Office Applied Vehicle Technology Pane, 2018.
|
50 |
Yamashita H, Chen G, Ruan Y, et al. Hierarchical multiscale modeling of tire-soil interaction for off-road mobility simulation[J]. ASME Journal of Computational Nonlinear Dynamics, 2019, 14(6): No. 061007.
|
51 |
Nishiyama K, Nakashima H, Shimizu H, et al. 2D FE-DEM analysis of contact stress and tractive performance of a tire driven on dry sand[J]. Journal of Terramechanics, 2017, 74(12): 25-33.
|
52 |
Nishiyama K, Kashima H, Shida T, et al. FE-DEM with interchangeable modeling for off-road tire traction analysis[J]. Journal of Terramechanics, 2018, 78: 15-25.
|
53 |
Guo N, Zhao J. A coupled FEM/DEM approach for hierarchical multiscale modeling of granular media[J]. International Journal for Numerical Methods in Engineering, 2014, 99(11): 789-818.
|
54 |
Liu Y, Sun W C, Yuan Z, et al. A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials[J]. International Journal for Numerical Methods in Engineering, 2016, 106(2): 129-160.
|
55 |
Nakashima H, Oida A. Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method[J]. Journal of Terramechanics, 2004, 41(4): 127-137.
|
56 |
Mechergui D, Jayakumar P. Efficient generation of accurate mobility maps using machine learning algorithms[J]. Journal of Terramechanics, 2020, 88: 53-63.
|
57 |
Kirchdoerfer T, Ortiz M. Data-driven computational mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 81-101.
|
58 |
Ghaboussi J, Garrett J H, Wu X. Knowledge-based modeling of material behavior with neural networks[J]. Journal of Engineering Mechanics, 1991, 117(1): 132-153.
|
59 |
Ellis G W, Yao C, Zhao R, et al. Stress-strain modeling of sands using artificial neural networks[J]. Journal of Geotechnical and Geo-environmental Engineering, 1995, 121(5): 429-435.
|
60 |
Furukawa T, Yagawa G. Implicit constitutive modelling for vis-coplasticity using neural networks[J]. Journal of Engineering Mechanics, 1998, 43(2): 195-219.
|
61 |
Wang K, Sun W C. A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 334: 337-380.
|
62 |
Leiter K W, Barnes B C, Becker R, et al. Accelerated scale-bridging through adaptive surrogate model evaluation[J]. Journal of Scientific Computing, 2018, 27: 91-106.
|
63 |
Yamashita H, Chen G C, Ruan Y F, et al. Parallelized multiscale off-road vehicle mobility aimulation algorithm and full-scale vehicle validation[J]. Journal of Computational and Nonlinear Dynamics, 2020, 15(9): No. 091007.
|
64 |
Chen G C, Yamashita H, Ruan Y F, et al. Enhancing hierarchical multiscale off-road mobility model by neural network surrogate model[J]. Journal of Computational and Nonlinear Dynamics, 2021, 16(8): No. 081005.
|
65 |
Tw A, Pj B. Next-generation NATO reference mobility model complex terramechanics: definition and literature review[J]. Journal of Terramechanics, 2021, 96: 45-57.
|
66 |
Priddy J D. Stochastic vehicle mobility forecasts using the NRMM[R]. Warren: US Army TARDEC, 1995.
|
67 |
Ma R, Chemistruck H, Ferris J B. State-of-the-art of terrain profile characterization models[J]. International Journal of Vehicle Design, 2013, 61(1): 285-304.
|
68 |
Vong T T, Haas G A, Henry C L. NATO reference mobility model (NRMM) modeling of the DEMO II experimental unmanned ground vehicle[R]. Nevada: Army Research Lab, 1999.
|
69 |
Willoughby W E, Jones R A, Mason G L, et al. Application of historical mobility testing to sensor-based robotic performance[J]. Society of Photo-Optical Instrumentation Engineers, 2006: 6230(4): 25-39.
|
70 |
Choi K K, Jayakumar P, Funk M, et al. Framework of reliability-based stochastic mobility map for next generation NATO reference mobility model[J]. Journal of Computational and Nonlinear Dynamics, 2020, 14(2): No. 021012.
|
71 |
Homer C, Dewitz J, Yang L M, et al. National land cover database for the conterminous United States representing a decade of land cover change information[J]. Photogrammetric Engineering and Remote Sensing, 2015, 81(5): 345-354.
|
72 |
Chemistruck H M, Ferris J B. Developing compact models of terrain surfaces[J]. Journal of Dynamic Systems, Measurement, and Control, 2013, 135(6): No. 061008.
|
73 |
Cressie N, Johannesson G. Fixed rank kriging for very large spatial data sets[J]. Journal of the Royal Statistical Society, 2008, 70(1): 209-226.
|
74 |
Hosseini S Z, Kappas M, Bodaghabadi M B, et al. Comparison of different geostatistical methods for soil mapping using remote sensing and environment variables in Poshtkouh rangelands, iran[J]. Polish Journal of Environmental Studies, 2014, 23(3): 737-751.
|
75 |
Yamashita H, Jayakumar P, Alsaleh M, et al. Physics-based deformable tire-soil interaction model for off-road mobility simulation and experimental validation[J]. Journal of Computational and Nonlinear Dynamics, 2018, 13(2):11-26.
|
76 |
Reid A A, Shoop S, Jones R, et al. High-fidelity ground platform and terrain mechanics modeling for military applications involving vehicle dynamics and mobility analysis[C]∥Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Fairbanks, USA, 2007:23-26.
|
77 |
Raymond J B, Jayakumar P. The shearing edge of tracked vehicle-soil interactions in path clearing applications utilizing multi-body dynamics modeling & simulation[J]. Journal of Terramechanics, 2015, 58: 39-50.
|
78 |
张滔, 戴瑜, 刘少军, 等. 深海履带式集矿机多体动力学建模与行走性能仿真分析[J]. 机械工程学报, 2015, 51(6): 173-180.
|
|
Zhang Tao, Dai Yu, Liu Shao-jun, et al. Multi-body dynamic modeling and mobility simulation analysis of deep ocean tracked miner[J]. Journal of Mechanical Engineering, 2015, 51(6): 173-180.
|
79 |
Ma W B, Rao Q H, Feng K, et al. Experimental research on grouser traction of deep-sea mining machine[J]. Applied Mathematics and Mechanics, 2015, 36(9): 1243-1252.
|
80 |
Li J, Liu S, Dai Y. Effect of grouser height on tractive performance of tracked mining vehicle[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(7): 2459-2466.
|
81 |
Xu F, Rao Q H, Ma W B. Turning traction force of tracked mining vehicle based on rheological property of deep-sea sediment[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(6): 1233-1240.
|
82 |
Trease B, Arvidson R, Lindemann R, et al. Dynamic modeling and soil mechanics for path planning of the Mars exploration rovers[C]∥ASME International Design Engineering Technical Conferences, Washington DC, USA, 2011: 755-765.
|
83 |
Ghotbi B, Gonzalez F, Jozsef Kovecses J, et al. Mobility evaluation of wheeled robots on soft terrain[J]. Mechanism and Machine Theory, 2016, 100: 259-282.
|
84 |
王宪良,王庆杰,李洪文,等. 农业机械土壤压实研究方法现状[J]. 热带农业科学, 2015, 35(6): 72-76.
|
|
Wang Xian-liang, Wang Qing-jie, Li Hong-wen, et al. Current research status of soil compaction by agriculture machinery[J]. Chinese Journal of Tropical Agriculture, 2015, 35(6): 72-76.
|
85 |
杨晓娟, 李春俭. 机械压实对土壤质量、作物生长、土壤生物及环境的影响[J]. 中国农业科学, 2008, 48(7): 2008-2015.
|
|
Yang Xiao-juan, Li Chun-jian. Impacts of mechanical compaction on soil properties, growth of crops, soil-borne organisms and environment[J]. Scientia Agricultura Sinica, 2008, 48(7): 2008-2015.
|
86 |
Keller T, Arvidsson J. A model for prediction of vertical stress distribution near the soil surface below rubber-tracked under carriage systems fitted on agricultural vehicles[J]. Soil and Tillage Research, 2016, 155: 116-123.
|
87 |
丁肇,李耀明,唐忠. 轮式和履带式车辆行走对农田土壤的压实作用分析[J].农业工程学报, 2020, 36(5): 10-18.
|
|
Ding Zhao, Li Yao-ming, Tang Zhong. Compaction effects of wheeled vehicles and tracked on farmland soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 10-18.
|
88 |
王亮,戴宪彪,居鹤华. 一种基于单应的月球车车轮沉陷视觉测量方法[J]. 宇航学报, 2011, 32(8): 1701-1707.
|
|
Wang Liang, Dai Xian-biao, Ju He-hua. Homography based visual measurement of wheel sinkage for a lunar rover[J]. Journal of Astronautics, 2011, 32(8): 1701-1707.
|
89 |
Hegde G M, Ye C, Robinson C A, et al. Computer-vision-based wheel sinkage estimation for robot navigation on lunar terrain[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(4): 1346-1356.
|
90 |
Shirai T, Ishigami G. Development of in-wheel sensor system for accurate measurement of wheel terrain interaction characteristics[J]. Journal of Terramechanics, 2015, 62: 51-61.
|
91 |
Goldberg S, Maimone M, Matthies L. Stereo vision and rover navigation software for planetary exploration[C]∥Proceedings, IEEE Aerospace Conference, Big Sky, MT, USA, 2002: 25-36.
|
92 |
Thrun S, Montemerlo M, Aron A. Probabilistic terrain analysis for high speed desert driving[C]∥Robotics: Science & Systems, Pennsylvania, USA, 2006: 16-19.
|
93 |
Loh J. Speed map for autonomous rovers over rough terrain[D]. Santa Cruz: School of Engineering, University of California, 2012.
|
94 |
Durst P J, Goodin C T, Anderson D T, et al. A reference autonomous mobility model[C]∥Winter Simulation Conference, Las Vegas, NV, USA, 2017: 4026-4037.
|
95 |
Durst P J, Goodin C. High fidelity modelling and simulation of inertial sensors commonly used by autonomous mobile robots[J]. World Journal of Modelling and Simulation, 2012, 8(3): 172-184.
|