Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2014-2024.doi: 10.13229/j.cnki.jdxbgxb20220259

Previous Articles    

Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control

Yao-wang PEI1(),Feng-xiang CHEN1(),Zhe HU2,Shuang ZHAI2,Feng-lai PEI3,Wei-dong ZHANG4,Jie-ran JIAO1   

  1. 1.School of Automotive Studies,Tongji University,Shanghai 201804,China
    2.Shanghai Re-fire Technology Co. ,Ltd. ,Shanghai 201800,China
    3.Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co. ,Ltd. ,Shanghai 201805,China
    4.College of Information and Communication Engineering,Hainan University,Haikou 570228,China
  • Received:2022-03-17 Online:2022-09-01 Published:2022-09-13
  • Contact: Feng-xiang CHEN E-mail:peiyw1997@163.com;fxchen@tongji.edu.cn

Abstract:

In order to improve the operation efficiency of fuel cell, its working temperature must be effectively controlled. In this paper, the thermal management system model is built on the Matlab/Simulink platform. The model can be used to analyze the flow distribution, pressure loss and heat exchange between various parts. Based on this model, an adaptive linear quadratic regulator (LQR) controller is proposed and compared with LTI-LQR and LQI controllers under different working conditions. The simulation results show that under the step response test, the adaptive LQR controller has no steady-state error, no overshoot and the rising time is 15 s; under the dynamic performance test, the stack outlet temperature can quickly track the reference value in the global range, which fully reflects the advantages of the controller.

Key words: vehicle engineering, proton exchange membrane fuel cell(PEMFC), thermal management system, dynamic feedback gain, linear quadratic regulator(LQR)

CLC Number: 

  • U469.72

Fig.1

Schematic diagram of thermalmanagement system"

Fig.2

Schematic diagram of stack energy conversion"

Fig.3

Polarization curve and power of 110 kW stack"

Table 1

Rated working condition parametersof 110 kW stack"

参数数值参数数值
?0.85Ist/A477
Ast/m21.5ncell370
Tst/K356λ2
Tamb/K298φ0.21
ΔTair/K10

Fig.4

LQY-P80 flow-head curve of electronic water pump"

Fig.5

ECV-0350B characteristic curve of thermostat"

Fig.6

Schematic diagram of fan heat dissipation"

Fig.7

Control strategy principle"

Table 2

Parameters of equilibrium operating point"

参数序号
12345
Ist/A100200300400500
U/V0.790.750.710.680.63
m˙col/(kg·s-12.472.883.213.533.95
Tst/K343.76351.74358.91360.02361.25
Tst_e/K342.93350.00356.15356.15356.15
Trad_e/K310.41324.22333.97339.49344.38
Tiloop_e/K342.93350.00356.15356.15356.15
α0.0850.200.320.550.91

Table 3

LTI model of each equilibrium operating point"

序号Ist/AABuBwC
1100-0.47620.47620???????????0???????????2.6582-3.44610.72090.06700???????????4.3254-4.32540???????????0???????????0.10050???????????-0.36630???????????-25.62580???????????38.43863.9384×10-30???????????00???????????00???????????00.2658[0100]
2200-0.47620.47620???????????0???????????2.6582-3.57690.73830.18030???????????4.4300-4.43000???????????0???????????0.27050???????????-0.53630???????????-23.67800???????????35.51632.8860×10-30???????????00???????????00???????????00.2658[0100]
3300-0.47620.47620???????????0???????????2.6582-3.68200.69330.33060???????????4.1598-4.15980???????????0???????????0.49590???????????-0.80160???????????-22.71060???????????34.06592.8857×10-30???????????00???????????00???????????00.2415[0100]
4400-0.47620.47620???????????0???????????2.6582-3.78290.47310.65170???????????3.0408-3.04080???????????0???????????0.92690???????????-1.29900???????????-18.73790???????????28.10684.6103×10-30???????????00???????????00???????????00.3721[0100]
5500-0.47620.47620???????????0???????????2.6582-3.91820.10861.15140???????????0.6517-0.65170???????????0???????????1.72700???????????-2.16560???????????-13.55150???????????22.24474.8587×10-30???????????00???????????00???????????00.4386[0100]

Fig.8

Comparison of output response of originalmodel and linearized model at Ist=300 A"

Table 4

K value of each equilibrium operating point"

序号Ist/AK
1100-1.0664???-9.6349??-0.0675???0.2338?-1
2200-1.0745???-9.6196??-0.0700???0.2288?-1
3300-0.9893??-9.6083??-0.0694???0.2223??-1
4400-0.9566??-9.5642??-0.0665???0.2068??-1
5500-1.1747??-9.4207??-0.0708???0.1896???-1

Fig.9

Steady-state performance test comparison diagram"

Fig.10

Step test comparison diagram"

Fig.11

Dynamic performance test comparison diagram"

Fig.12

Controller robustness test"

1 Pandiyan S, Jayakumar K, Rajalakshmi N, et al. Thermal and electrical energy management in a PEMFC stack—an analytical approach[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 469-473.
2 Rojas J D, Ocampo-Martínez C, Kunusch C. Thermal modelling approach and model predictive control of a water-cooled PEM fuel cell system[C]∥39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: 3806-3811.
3 Han J, Yu S, Yi S. Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4328-4341.
4 Chen F, Jiao J, Yu Y, et al. Active control of stack inlet and outlet coolant temperature for the PEM fuel cell system[C]∥2017 International Conference on Fuel Cell Science, Engineering and Technology, Tianjin, China, 2017: No. V001T01A001.
5 Yu S, Jung D. A study of operation strategy of cooling module with dynamic fuel cell system model for transportation application[J]. Renewable Energy, 2010, 35(11): 2525-2532.
6 Saygili Y, Eroglu I, Kincal S. Model based temperature controller development for water cooled PEM fuel cell systems[J]. International Journal of Hydrogen Energy, 2015, 40(1): 615-622.
7 Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: The University of Michigan, 2003.
8 牛茁,张玉瑾,邓惠文,等. 基于OPC技术的水冷PEMFC热管理控制系统[J]. 太阳能学报,2019, 40(4): 942-949.
Niu Zhuo, Zhang Yu-jin, Deng Hui-wen, et al. Thermal management system of water-cooled PEMFC based on OPC technology[J]. Acta Energiae Solaris Sinica, 2019, 40(4), 942-949.
9 郑文杰,杨径,朱林培,等. 车用燃料电池热管理性能仿真与试验研究[J]. 汽车工程,2021,43(3): 381-386.
Zheng Wen-jie, Yang Jing, Zhu Lin-pei, et al Simulation and experimental study on thermal management system of vehicle fuel cell[J]. Automotive Engineering, 2021, 43(3): 381-386.
10 郭爱,陈维荣,刘志祥,等. 燃料电池机车热管理系统建模和动态分析[J]. 西南交通大学学报,2015,50(5): 953-960.
Guo Ai, Chen Wei-rong, Liu Zhi-xiang, et al. Modeling and dynamic analysis of thermal management system for fuel cell locomotive[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 953-960.
11 赵洪波,刘杰,马彪,等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报,2020,71(5): 2139-2150.
Zhao Hong-bo, Liu Jie, Ma Biao, et al. Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC Journal, 2020, 71(5): 2139-2150.
12 Cheng Si-liang, Fang Chuan, Xu Liang-fei, et al. Model-based temperature regulation of a PEM fuel cell system on a city bus[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13566-13575.
13 Huang L H, Chen J, Liu Z Y, et al. Adaptive thermal control for PEMFC systems with guaranteed performance[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11550-11558.
14 Liso V, Nielsen M P, Kaer S K, et al. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8410-8420.
15 刘岩, 丁天威, 王宇鹏, 等. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报: 工学版, DOI:10.13229/j.cnki.jdxbgxb20220346 .
doi: 10.13229/j.cnki.jdxbgxb20220346
Liu Yan, Ding Tian-wei, Wang Yu-peng, Du Jing, Zhao hong-hui. Thermal management strategy of fuel cell engine based on adaptive control strategy[J]. Journal of Jilin University (Engineering and Technology Edition), DOI:10.13229/j.cnki.jdxbgxb20220346 .
doi: 10.13229/j.cnki.jdxbgxb20220346
16 Chen F X, Jiao J R, Hou Z J, et al. Robust polymer electrolyte membrane fuel cell temperature tracking control based on cascade internal model control[J]. Journal of Power Sources, 2020, 479: No. 229008.
17 Han J, Park J, Yu S. Control strategy of cooling system for the optimization of parasitic power of automotive fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13549-13557.
18 沈维道,童钧耕. 工程热力学[M]. 4版. 北京:高等教育出版社出版,2007.
19 谭羽飞. 工程热力学[M]. 6版. 北京:中国建筑工业出版社,2016.
20 刘占孟,兰蔚. 流体力学[M]. 北京:科学出版社,2017.
21 Rojas J D, Ocampo-Martinez C, Kunusch C. Thermal modelling approach and model predictive control of a water-cooled pem fuel cell system[C]∥39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: No.14003725.
22 郭爱. 基于过氧比的车载燃料电池系统控制技术[D]. 成都: 西南交通大学电气工程学院, 2015.
Guo Ai. Control of fuel cell system for vehicle based on oxygen excess ratio[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015.
[1] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[2] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[3] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[4] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[5] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[6] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[7] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
[8] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Optimization of tooth surface modification based on a two-stage reduction gear system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1541-1551.
[9] Guang-ming NIE,Bo XIE,Yan-tao TIAN. Design of cooperative adaptive cruise control algorithm based on Frenet framework [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1687-1695.
[10] Shuai HAO,Chuan-tai CHENG,Jun-nian WANG,Jun-yuan ZHANG,You YU. Ergonomic optimization and test evaluation of sports SUV cockpit layout design [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1477-1488.
[11] Jia-xu ZHANG,Chong GUO,Chen WANG,Jian ZHAO,Xin-zhi WANG. Performance evaluation of automatic parking system based on hardware in the loop simulation platform [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1552-1560.
[12] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[13] Xiong LI,Feng-chong LAN,Ji-qing CHEN,Fang TONG. Comparison of injuries in front impact between Hybird III dummy model and CHUBM human biomechanical model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1264-1272.
[14] Ying-chao ZHANG,Yun-hang LI,Zi-yu GUO,Guo-hua WANG,Zhe ZHANG,Chang SU. Optimization of the aerodynamic drag reduction of a cab behind engine vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 745-753.
[15] Wen-ku SHI,Shu-guang ZHANG,You-kun ZHANG,Zhi-yong CHEN,Yi-fei JIANG,Bin-bin LIN. Parameter identification of magnetorheological damper model with modified seagull optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 764-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!