Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (5): 1282-1288.doi: 10.13229/j.cnki.jdxbgxb.20210920

Previous Articles    

Influence of lap welds on the lightweight design of welded aluminum structures

Xin CHEN1(),Guan-chen ZHANG1,Kang-ming ZHAO1,Jia-ning WANG1,Li-fei YANG1,De-rong SITU2   

  1. 1.State Key Laboratory of Automobile Simulation and Control,Jilin University,Changchun 130022,China
    2.School of Mechanical and Traffic Engineering,Guangxi University of Science and Technology,Liuzhou 545006,China
  • Received:2021-09-14 Online:2023-05-01 Published:2023-05-25

Abstract:

In order to study the effect of Molten inert gas welding(MIG) lap weld on the lightweight design of aluminum alloy welded structure, the equivalent model of shell element was established through tensile of welding seam, and it was applied to the lightweight design method based on multi-objective optimization of structural parameterized model. The results show that after considering the influence of weld, the results are closer to the engineering practice, the performance of each target is optimized, besides the reasonable distribution of stress at the weld and a more ideal weld layout are realized, but with increased quality. Therefore, the lightweight design method of welding structure of aluminum alloy considering the effect of MIG lap weld has better engineering practical application significance.

Key words: vehicle engineering, aluminum alloy welded structure, weld shell element model, parametric model, multi-objective optimization

CLC Number: 

  • U46

Fig.1

Parameterized model of aluminum alloy welding structure"

Table 1

Application of loads and boundary conditions in various working conditions"

工 况固定带载荷施加弧板载荷施加
向前8倍静载载荷垂直向上2.25 mg垂直向下2.75 mg,前半部分加载向前4 mg
8倍静载侧向载荷垂直向上2.25 mg,水平侧向1.6 mg垂直向下2.75 mg,水平侧向2.4 mg
8倍静载垂直向上垂直向上4 mg-
向前10g加速度载荷垂直向上2.25 mg垂直向下2.75 mg,前板部分加载向前5 mg
向后10g加速度载荷垂直向上2.25 mg垂直向下2.75 mg,后板部分加载向后5 mg
5g侧向加速度载荷垂直向上2.25 mg,水平侧向1.6 mg垂直向下2.75 mg,水平侧向1.5 mg

Fig.2

Schematic diagram of position of fixed belt and arc plate"

Fig.3

Experimental design process on Isight"

Fig.4

Plot of contribution of position variables to maximum displacement response"

Table 2

Comparison of the accuracy of three approximate models"

项目响应面模型径向基神经网络模型克里格模型
R-SquareRMSAverageR-SquareRMSAverageR-SquareRMSAverage
误差要求>0.9<0.2<0.2>0.9<0.2<0.2>0.9<0.2<0.2
质量1.000.000.001.000.010.010.000.240.20
最大位移1.000.000.000.990.030.030.000.250.19
最大应力0.810.060.040.930.100.060.770.110.09
一阶模态1.000.010.010.920.120.090.000.360.34

Fig.5

Tensile specimen of lap weld"

Fig.6

Weld failure form"

Table 3

Related mechanical properties of three sets of welds"

焊接形式屈服强度 /MPa抗拉强度 /MPa泊松比弹性模量 /GPa
Ⅰ型焊缝106.99155.660.360
Ⅱ型焊缝88.84111.720.350
Ⅲ型焊缝95.02154.420.360

Fig.7

Equivalent model of lap weld shell element"

Fig.8

Comparison of simulation and experiment of welding seam equivalent model"

Fig.9

Maximum stress at weld under 10g forward acceleration load"

Fig.10

Parametric model and weld design variables"

Table 4

Comparison of optimization results of design variables"

变量描 述原优化结果/mm考虑焊缝的优化结果/mm
T1鞍座厚度9.110.0
T3前竖梁厚度6.26.0
T4后竖梁厚度6.66.4
T6固定带厚度5.46.2
T8前板厚度44.9
T9后板厚度4.64.0
T10底座厚度4.14.0
L1前板X向移动-20-20
L2前板Z向移动-10+1
L3后板X向移动+20+20
L4后半Z向移动-10-10
S3固定带宽度-10-10
S4前板加强筋长度+5-2
S5后板加强筋长度+4+5
S6前板上端Z向移动0-8
S8后板上端Z向移动+6+18
L8鞍座焊缝间距-+10
L9底座焊缝间距--45

Table 5

Comparison of optimized performance of aluminum alloy welding structure"

性 能原支架结构无焊缝多目标优化支架考虑焊缝多目标优化目标值
最大位移/mm8倍前0.6190.6910.657<13
8倍侧2.3082.0981.920<13
8倍上1.2621.3121.264<13
最大应力/MPa10g104.343110.612115.081<130
10g83.943109.750115.253<130
5g161.867123.098122.614<130
一阶模态/Hz25.9328.4928.73>25
质量/kg64.8561.3365.14Min
1 Palani P K, Murugan N. Selection of parameters of pulsed current gas metal arc welding[J]. Journal of Materials Processing Technology,2006,172(1):1-10.
2 Kah P, Hiltunen E, Martikainen J. Sensing in aluminum alloy welding[J]. Adv Mater Res-Switz, 2014, 849: 291-287.
3 吕天佟, 王登峰, 王传青. 隐式参数化白车身多目标协同优化设计[J]. 北京理工大学学报, 2019, 39(5): 447-453.
Lv Tian-tong, Wang Deng-feng, Wang Chuan-qing. Multi-objective lightweight collaborative optimization and design for latent parametric BIW structure[J]. Journal of Beijing University of Technology, 2019, 39(5): 447-453.
4 陈鑫, 胡翠松, 宁厚于, 等. SUV白车身隐式参数化建模及多性能优化轻量化[J]. 吉林大学学报: 工学版, 2016, 46(6): 1780-1785.
Chen Xin, Hu Cui-song, Ning Hou-yu, et al. Implicit parameterization modeling and multi-performance lightweight optimization for SUV body-in-white[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(6): 1780-1785.
5 Hilmann J, Paas M, Haenschke A, et al. Automatic concept model generation for optimisation and robust design of passenger cars[J]. Advances in Engineering Software, 2007, 38(11/12): 795-801.
6 Rayamajhi M, Hunkeler S, Duddeck F. Geometrical compatibility in structural shape optimisation for crashworthiness[J]. International Journal of Crashworthiness, 2014, 19(1): 42-56.
7 Shi Y, Lin Z, Zhu P, et al. Impact modeling of the weld line of tailor-welded blank[J]. Mater Design, 2008, 29(1): 232-238.
8 Xu F, Tian X, Li G. Experimental study on crashworthiness of functionally graded thickness thin-walled tubular structures[J]. Experimental Mechanics, 2015, 55(7): 1339-1352.
9 唐辉, 门永新, 毛雪峰, 等. 基于隐式参数化的车身概念开发[J]. 汽车工程, 2014, 36(10): 1248-1253.
Tang Hui, Yong-xin Men, Mao Xue-feng,et al.Concept development of vehicle body based on implicit parametric technology[J]. Automotive Engineering, 2014, 36(10): 1248-1253.
10 . 燃气汽车专用装置的安装要求中气瓶安装强度试验方法的应用 [S].
11 宋康, 陈潇凯, 林逸. 汽车行驶动力学性能的多目标优化[J]. 吉林大学学报: 工学版, 2015, 45(2):352-357.
Song Kang, Chen Xiao-kai, Lin Yi. Multi-objective optimization of vehicle ride dynamic behaviors[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(2): 352-357.
12 . 钢结构焊接规范 [S].
13 . 焊接接头拉伸试验方法 [S].
14 . 金属材料焊缝破坏性试验 十字接头和搭接接头拉伸试验方法 [S].
15 Fermer M, Svensson H.Industrial experiences of FE-based fatigue life predictions of welded automotive structures[J]. Fatigue & Fracture of Engineering Materials and Structures, 2001, 24(7): 489-500.
16 陈军, 成艾国, 陈涛, 等. Beam与Solid两种点焊模拟方法对比研究[J]. 中国机械工程, 2012, 23(19): 2388-2392.
Chen Jun, Cheng Ai-guo, Chen Tao, et al. Comparative study of spot weld simulation method between beam and solid[J]. China Mechanical Engineering, 2012, 23(19): 2388-2392.
17 Lin S H, Pan J, Tyan T, et al. A general failure criterion for spot welds under combined loading conditions[J]. International Journal of Solids and Structures, 2003, 40(21): 5539-5564.
[1] Lei CHEN,Yang WANG,Zhi-sheng DONG,Ya-qi SONG. A vehicle agility control strategy based on steering intent [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1257-1263.
[2] Shao-hua WANG,Kun CHU,De-hua SHI,Chun-fang YIN,Chun LI. Robust compound coordinated control of HEV based on finite⁃time extended state observation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1272-1281.
[3] Xiao-bo CHEN,Ling CHEN. Variational Bayesian cooperative target tracking with unknown localization noise statistics [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1030-1039.
[4] Hai-bo LONG,Jia-qi YANG,Liang YIN,Xue-yu ZHAO,Zi-quan XIANG. Multi-objective decision-making on emergency material distribution under uncertain demand based on robust optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1078-1084.
[5] Rui ZHAO,Yun LI,Hong-yu HU,Zhen-hai GAO. Vehicle collision warning method at intersection based on V2I communication [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1019-1029.
[6] Hong-bo YANG,Wen-ku SHI,Zhi-yong CHEN,Nian-cheng GUO,Yan-yan ZHAO. Multi⁃objective optimization of macro parameters of helical gear based on NSGA⁃Ⅱ [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1007-1018.
[7] Ke HE,Hai-tao DING,Nan XU,Kong-hui GUO. Enhanced localization system based on camera and lane markings [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 663-673.
[8] Bing ZHU,Tian-xin FAN,Jian ZHAO,Pei-xing ZHANG,Yu-hang SUN. Accelerate test method of automated driving system based on hazardous boundary search [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 704-712.
[9] Ying HE,Jun-song FAN,Wei WANG,Geng SUN,Yan-heng LIU. Joint optimization of secure communication and trajectory planning in unmanned aerial vehicle air⁃to⁃ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 913-922.
[10] Yan-tao TIAN,Fu-qiang XU,Kai-ge WANG,Zi-xu HAO. Expected trajectory prediction of vehicle considering surrounding vehicle information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 674-681.
[11] Song GAO,Yu-qiong WANG,Yu-hai WANG,Yi XU,Ying-chao ZHOU,Peng-wei WANG. Longitudinal and lateral integrated feedback linearization control for intelligent vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 735-745.
[12] Bo XIE,Rong GAO,Fu-qiang XU,Yan-tao TIAN. Stability control of human⁃vehicle shared steering system under low adhesion road conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 713-725.
[13] Yan-tao TIAN,Yan-shi JI,Huan CHANG,Bo XIE. Deep reinforcement learning augmented decision⁃making model for intelligent driving vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 682-692.
[14] Jian ZHANG,Jin-bo LIU,Yuan GAO,Meng-ke LIU,Zhen-hai GAO,Bin YANG. Localization algorithm of vehicular sensor based on multi⁃mode interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 772-780.
[15] Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!