Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (6): 1719-1728.doi: 10.13229/j.cnki.jdxbgxb.20230096

Previous Articles    

Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure

Chun-di SI1,2(),Ya-ning CUI2,Zhong-yin XU3,Tao-tao FAN2   

  1. 1.State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.School of Traffic and Transportation,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    3.Hebei Xiongan Jingde Expressway Co. ,Ltd. ,Baoding 071700,China
  • Received:2023-02-02 Online:2023-06-01 Published:2023-07-23

Abstract:

Firstly, the mesoscopic parameters of asphalt upper layer, lower layer and waterproof bond layer were calibrated by uniaxial compression test, splitting test and oblique shear test. Then, by setting the failure area of interlayer bond, the stress, displacement and velocity of each structural layer was monitored. The results show that the bonding failure between asphalt surface layers significantly affects the stress and motion state of the top particles of the upper and lower layers, and the transverse stress of the bottom particles increases obviously. The bonding failure between the asphalt surface and the bridge panel leads to the increase of transverse stress of the particles at the bottom of the lower layer and the transverse movement trend between the layers. By monitoring the mechanical state changes of different structural layer materials after interlayer bonding failure, the development of bridge deck paving layer disease can be predicted, which can provide reference for preventive maintenance of asphalt bridge deck pavement.

Key words: road engineering, bridge deck pavement, discrete element method, meso-mechanical, interlaminar bonding failure

CLC Number: 

  • U414

Fig.1

Parallel bonding model"

Fig.2

Contact bonding constitutive model"

Fig.3

Discrete element model of bridge deck pavement"

Fig.4

Contact model distribution"

Fig.5

Analysis of simply supported beam bridge of FEM"

Fig.6

Laboratory test of different structural layer materials"

Fig.7

Numerical simulation of uniaxial compression test"

Fig.8

Numerical simulation of split test"

Fig.9

Numerical simulation of oblique shear test"

Fig.10

Comparison between laboratory test and simulation results"

Table 1

Mesoscopic parameters of each structural layer of bridge deck pavement"

结构层位颗粒密度/(kg·m-3刚度比拉伸强度/MPa剪切强度/MPa弹性模量/MPa
上面层粗集料24502.52.222.652200
砂浆21002.51.361.8572
下面层粗集料24502.01.82.33200
砂浆21002.01.31.852
水泥混凝土桥面板粗集料250013.24.52900
砂浆215014.55.4250

Fig.11

Typical particle identification of deck pavement"

Fig.12

Layout of the measure"

Fig.13

Rolling load loading model"

Fig.14

Scroll loading contact"

Fig.15

Tire ground pressure curve"

Fig.16

Contact model diagram of the interlayer bond failure structure at different positions"

Fig.17

Transverse stress response under different interlayer bonding states"

Fig.18

Vertical stress response under different interlayer bonding states"

Fig.19

Shear stress response under different interlayer bonding states"

Fig.20

Vertical displacement of particles under different interlayer bonding states"

Fig.21

Vertical velocity of particles under different interlayer bonding states"

1 黄晓明. 水泥混凝土桥面沥青铺装层技术研究现状综述[J]. 交通运输工程学报, 2014, 14(1): 1-10.
Huang Xiao-ming. Review of research status of asphalt paving layer technology for cement concrete bridge deck [J]. Journal of Traffic and Transportation Engineering, 2014,14(1):1-10.
2 黄晓明, 赵润民. 道路交通基础设施韧性研究现状与展望[J/OL]. [2023-02-01].
3 Wu Shu-hua, Chen Hua-xin, Zhang Jiu-peng, et al. Effects of interlayer bonding conditions between semi-rigid base layer and asphalt layer on mechanical responses of asphalt pavement structure[J]. International Journal of Pavement Research and Technology, 2017, 10(3): 274-281.
4 Hu X, Walubita L F. Effects of layer interfacial bonding conditions on the mechanistic responses in asphalt pavements[J]. Journal of Transportation Engineering, 2011, 137(1): 28-36.
5 Liu L, Hao P W. Effect of bonding condition between asphalt layers on behavior of pavement[C]∥The Twelfth Cota international Conference of Transportation Professionals, American Society of Civil Engineers, Beijing, China, 2012: 2955-2964.
6 Chen W D, Hui B, Rahman A. Interlayer shear characteristics of bridge deck pavement through experimental and numerical analysis[J]. Materials, 2022, 15(19): No.7001.
7 包龙生, 樊乾玉, 兰皓, 等. 基于层间接触的空心板梁及桥面铺装在双轴移动荷载下的力学响应分析[J]. 沈阳建筑大学学报: 自然科学版, 2020, 36(3): 491-499.
Bao Long-sheng, Fan Qian-yu, Lan Hao, et al. Mechanical response analysis of hollow slab girder and bridge deck pavement under biaxial moving loads based on interlayer contact[J]. Journal of Shenyang Jianzhu University (Natural Science Edition), 2020, 36(3): 491-499.
8 张锋, 李梦琪, 王天宇, 等. 水泥混凝土桥面复合防水粘结层的性能[J]. 哈尔滨工业大学学报, 2020, 52(3): 26-32.
Zhang Feng, Li Meng-qi, Wang Tian-yu, et al. Performance of composite waterproof bonding layer of cement concrete bridge deck[J]. Journal of Harbin institute of Technology, 2020, 52(3): 26-32.
9 Chun S, Kim K, Greene J, et al. Evaluation of interlayer bonding condition on structural response characteristics of asphalt pavement using finite element analysis and full-scale field tests[J]. Construction and Building Materials, 2015, 96, 307-318.
10 Mahmound E, Masad E, Nazarian S. Discrete element analysis of the influences of aggregate properties and internal structure on fracture in asphalt mixture[J]. Journal of Materials in Civil Engineering, 2010, 22(1): 10-20.
11 陈俊. 基于离散元法的沥青混合料虚拟疲劳试验方法[J]. 吉林大学学报: 工学版, 2010, 40(2): 435-440.
Chen Jun. Virtual fatigue test method of asphalt mixture based on discrete element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(2): 435-440.
12 陈俊, 黄晓明. 沥青路面结构的荷载响应分析[J]. 建筑材料学报, 2012, 15(1): 116-121.
Chen Jun, Huang Xiao-ming. Load response analysis of asphalt pavement structure[J]. Journal of Building Materials, 2012, 15(1): 116-121.
13 彭勇, 杨汉铎, 陆学元, 等. 基于离散元法空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报: 工学版, 2021, 51(3): 956-964.
Peng Yong, Yang Han-duo, Lu Xue-yuan, et al. Influence of void characteristics on virtual shear fatigue life of asphalt mixture based on discrete element method[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 956-964.
14 严战友, 王朝辉, 陈恩利, 等. 离散元法的沥青路面车-路动力学响应分析[J]. 中国公路学报, 2019, 32(9): 51-60, 79.
Yan Zhan-you, Wang Zhao-hui, Chen En-li, et al. Dynamic response analysis of asphalt pavement vehicle-road based on discrete element method[J]. Chinese Journal of Highways, 2019, 32(9): 51-60, 79.
15 Cui Ya-ning, Si Chun-di, Li Song, et al. Comparative study of the mesomechanical response of asphalt bridge deck pavement under multiple loads[J]. Coatings, 2022, 12(11): No.1665.
16 . 公路工程沥青及沥青混合料试验规程 [S].
17 . 公路钢桥面铺装设计与施工技术规范 [S].
18 赵全满, 张洪亮, 周浩. 基于离散元的水泥混凝土细观模拟试验[J]. 公路交通科技, 2016, 33(12): 48-55.
Zhao Quan-man, Zhang Hong-liang, Zhou Hao. Mesoscopic simulation test of cement concrete based on discrete element[J]. Highway Traffic Science and Technology, 2016, 33(12): 48-55.
19 王宁, 马涛, 陈丰, 付永强. 影响智能骨料感知的关键因素及数据分析方法[J/OL]. [2023-02-01].
20 马少坤, 黄骁, 韦榕宽, 等. 考虑滚动阻抗的线性接触模型离散元宏细观参数敏感性研究[J]. 中国安全生产科学技术, 2021, 17(6): 104-110.
Ma Shao-kun, Huang Xiao, Wei Rong-kuan, et al. Macro and mesoscopic parameter sensitivity of discrete element of linear contact model considering rolling impedance[J]. China Safety Production Science and Technology, 2021, 17(6): 104-110.
21 薛强, 盛谦. 沥青路面破坏的多场耦合效应及控制技术[M]. 北京: 科学出版社, 2009: 30-80.
[1] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[2] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[3] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[4] Xiao-kang ZHAO,Zhe HU,Jiu-peng ZHANG,Jian-zhong PEI,Ning SHI. Research progress in intelligent monitoring of pavement icing based on optical fiber sensing technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1566-1579.
[5] Sui-ning ZHENG,Rui HE,Tian-yu LU,Zi-yi XU,Hua-xin CHEN. Preparation and evaluation of RET/rubber composite modified asphalt and asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1381-1389.
[6] Hai-bin WEI,Shuan-ye HAN,Hai-peng BI,Qiong-hui LIU,Zi-peng MA. Intelligent sensing road active ice and snow removal system and experimental technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1411-1417.
[7] Fan YANG,Chen-chen LI,Sheng LI,Hai-lun LIU. Numerical simulation of continuously reinforced concrete pavement with double⁃layer reinforcement under effect of temperature shrinkage [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1122-1132.
[8] Bo-wen GUAN,Wen-jin DI,Fa-ping WANG,Jia-yu WU,Shuo-wen ZHANG,Zhi-xun JIA. Damage of concrete subjected to sulfate corrosion under dry⁃wet cycles and alternating loads [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1112-1121.
[9] Zhuang-zhuang LIU,You-wei ZHANG,Peng-yu JI,Abshir Ismail Yusuf,Lin LI,Ya-zhen HAO. Study on heat transfer characteristics of electric heating snow melting asphalt pavement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 523-530.
[10] Hai-bin WEI,Zi-peng MA,Hai-peng BI,Han-tao LIU,Shuan-ye HAN. Conductive rubber composite pavement paving technology based on mechanical response analysis method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 531-537.
[11] Xu CHEN,Chao-fei CAO,Jing SHANG,Ming-xing HUANG,Chang-fa AI,Dong-ya Ren. Evaluation of influence of gradation segregation on pavement moisture damage under action of dynamic and static water environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 210-219.
[12] Yong PENG,Xiu-fang ZHANG,Ze-yu GUO,Xue-yuan LU,Yan-wei LI. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 178-187.
[13] Ya-zhen SUN,Zhi ZHENG,Wei-ming HUANG,Jin-chang WANG. Structural analysis of cement pavement with cracks based on state⁃space method [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 188-196.
[14] Shuang SHI,Lan-qin LIN,Tao MA,Lin-hao GU,Yan-ning ZHANG. Molecular dynamics‒based stability of biomass prime coat oil [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 197-209.
[15] Nie-yang-zi LIU,Xin RONG,Hong-hai LIU,Qing-hua BIAN,Hai LAN. Mixing power test and viscosity model of asphalt mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 220-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!