Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2837-2848.doi: 10.13229/j.cnki.jdxbgxb.20221523
Qing-long ZHANG1(
),Nai-fu Deng1,Zai-zhan AN2,Rui MA3,Yu-fei ZHAO4(
)
CLC Number:
| 1 | 陈祖煜, 赵宇飞, 邹斌, 等. 大坝填筑碾压施工无人驾驶技术的研究与应用[J]. 水利水电技术, 2019, 50(8): 1-7. |
| Chen Zu-yu, Zhao Yu-fei, Zou Bin, et al. Study and application of unmanned driving technology or filling and rolling construction of earth-rockfill dam[J]. Water Resources and Hydropower Engineering, 2019, 50(8): 1-7. | |
| 2 | 李庆斌, 马睿, 胡昱, 等. 大坝智能建造研究进展与发展趋势[J]. 清华大学学报:自然科学版, 2022, 62 (8): 1252-1269. |
| Li Qing-bin, Ma Rui, Hu Yu, et al. A review of intelligent dam construction techniques[J]. Journal of Tsinghua University(Science and Technology), 2022, 62(8): 1252-1269. | |
| 3 | 刘东海, 高雷. 基于碾振性态的土石坝料压实质量监测指标分析与改进[J]. 水力发电学报, 2018, 37(4): 111-120. |
| Liu Dong-hai, Gao Lei. Analysis and improvement of roller vibration behavior-based indexes for monitoring compaction quality of earth-rock dams[J]. Journal of Hydroelectric Engineering, 2018, 37(4): 111-120. | |
| 4 | 王飞. 基于碾压质量实时监控的高心墙堆石坝沉降变形分析理论与应用[D]. 天津: 天津大学建筑工程学院,2017. |
| Wang Fei. Theory and application of high core rockfill dam settlement analysis based on real-time monitoring of rolling-compaction quality[D]. Tianjin: School of Civil Engineering,Tianjin University, 2017. | |
| 5 | 刘东海, 刘志磊, 冯友文. 堆石坝料压实监测指标影响因素及适用性分析[J]. 水力发电学报, 2019, 38(6): 1-10. |
| Liu Dong-hai, Liu Zhi-lei, Feng You-wen. Analysis on applicability and influence factors of real-time monitoring compaction indexes for rockfill dam materials[J]. Journal of Hydroelectric Engineering, 2019, 38(6): 1-10. | |
| 6 | 林威伟, 钟登华, 胡炜, 等. 基于随机森林算法的土石坝压实质量动态评价研究[J]. 水利学报, 2018, 49(8): 945-955. |
| Lin Wei-wei, Zhong Deng-hua, Hu Wei, et al. Study on dynamic evaluation of compaction quality of earth rock dam based on random forest[J]. Journal of Hydraulic Engineering, 2018, 49(8): 945-955. | |
| 7 | 潘恒彦, 张文会, 梁婷婷, 等. 基于MIMIC与机器学习的出租车驾驶员交通事故诱因分析[J]. 吉林大学学报:工学版, 2023, 53(2): 457-467. |
| Pan Heng-yan, Zhang Wen-hui, Liang Ting-ting, et al. Inducement analysis of taxi drivers' traffic accidents based on MIMIC and machine learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 532(2):457-467. | |
| 8 | Wang J J, Zhong D H, Wu B P, et al. Evaluation of compaction quality based on SVR with CFA: case study on compaction quality of earth-rock dam[J]. J Comput Civ Eng, 2018, 32(3): No.05018001. |
| 9 | 朱冰, 范天昕, 赵健, 等. 基于危险边界搜索的自动驾驶系统加速测试方法[J]. 吉林大学学报:工学版, 2023, 53(3): 704-712. |
| Zhu Bing, Fan Tian-xin, Zhao Jian, et al. Accelerate test method of automated driving system based on hazardous boundary search[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(3): 704-712. | |
| 10 | 王佳俊, 钟登华, 关涛, 等. 基于KM和AC-BFA模糊逻辑的土石坝压实质量实时评价[J]. 水力发电学报, 2019, 38(3): 165-178. |
| Wang Jia-jun, Zhong Deng-hua, Guan Tao, et al. Real-time evaluation of compaction quality of earth-rock dams using fuzzy logic based on KM and AC-BFA[J]. Journal of Hydroelectric Engineering, 2019, 38(3): 165-178. | |
| 11 | Wang F, Zhong D H, Yan Y L, et al. Rockfill dam compaction quality evaluation based on cloud-fuzzy model[J]. Journal of Zhejiang University-Science A, 2018, 19(4): 289-303. |
| 12 | 安再展, 刘天云, 皇甫泽华, 等. 利用CMV评估堆石料压实质量的神经网络模型[J]. 水力发电学报, 2020,39(4): 110-120. |
| An Zai-zhan, Liu Tian-yun, Ze-hua Huangpu, et al. Neural network model for evaluating compaction quality of rockfill materials by compaction meter value[J]. Journal of Hydroelectric Engineering, 2020, 39(4): 110-120. | |
| 13 | 刘彪, 赵宇飞, 陈祖煜, 等. 基于碾压波速的堆石坝压实质量实时监测指标的研究[J]. 中国水利水电科学研究院学报, 2022, 20(1): 20-29. |
| Liu Biao, Zhao Yu-fei, Chen Zu-yu, et al. Study on real-time monitoring index for rockfil dam compaction quality based on rolling wave velocity[J]. Journal of China Institute of Water Resources and Hydropower Research, 2022, 20(1): 20-29. | |
| 14 | Wang X, Dong X, Zhang Z, et al. Compaction quality evaluation of subgrade based on soil characteristics assessment using machine learning[J]. Transportation Geotechnics, 2022, 32: No.100703. |
| 15 | Terbuch A, Zöhrer A, Winter V, et al. Quality monitoring in vibro ground improvement—a hybrid machine learning approach[J]. Geomechanics and Tunnelling, 2022, 15(5): 658-664. |
| 16 | Wang X F, Cheng C, Li J L, et al. Automated monitoring and evaluation of highway subgrade compaction quality using artificial neural networks[J]. Automation in Construction, 2023, 145:No.104663. |
| 17 | An Z Z, Liu T Y, Zhang Z S, et al. Dynamic optimization of compaction process for rockfill materials[J]. Automation in Construction, 2020, 110: No.103038. |
| 18 | Liu B, Zhao Y, Wang W, et al. Compaction density evaluation model of sand-gravel dam based on Elman neural network with modified particle swarm optimization[J]. Frontiers in Physics, 2022, 9:No.806231. |
| 19 | Hong Y, Tian Z H, Sun X. Dynamic evaluation for compaction quality of roller compacted concrete based on reliability metrics[J]. Journal of Construction Engineering and Management, 2020, 146 (10): No.4020123. |
| 20 | Wang J J, Zhong D H, Adeli H, et al. Smart bacteria-foraging algorithm‐based customized kernel support vector regression and enhanced probabilistic neural network for compaction quality assessment and control of earth-rock dam[J]. Expert Systems, 2018, 35(6): No.e12357. |
| 21 | Zhang Q, Zhu Y, He L, et al. Assessment of roller-integrated compaction monitoring indexes for low-liquid-limit silt based on roller vibratory acceleration analysis[J]. Journal of Transportation Engineering, Part B: Pavements, 2023,149(4): No.04023020. |
| 22 | Zhang Q, Liu T, Zhang Z, et al. Compaction quality assessment of rockfill materials using roller-integrated acoustic wave detection technique[J]. Automation in Construction, 2019, 97: 110-121. |
| 23 | Wang X, Cheng C, Zhang J, et al. Real-time monitoring and quality assessment of subgrade compaction: key factors and ANN model[J]. Acta Geotechnica, 2022: 1-18. |
| 24 | Liu M, Wang X, Wang J, et al. Comprehensive evaluation for real-time compaction quality using i-AHP and i-GAM: case study of earth-rock dam[J]. Applied Sciences, 2019, 9(8): No.1543. |
| 25 | Zhang Q, An Z, Liu T, et al. Intelligent rolling compaction system for earth-rock dams[J]. Automation in Construction, 2020, 116:No.103246. |
| 26 | Committe D. Test method for unconfined compressive strength of cohesive soil[J]. ASTM International: West Conshohocken, USA, 2016:1-22. |
| 27 | White D J, Rupnow T D, Ceylan H. Influence of Subgrade/subbase Non-uniformity on PCC Pavement Performance[M]. New York: American Society of Civil Engineers(ASCE), 2004: 1058-1065. |
| 28 | Anderegg R, Kaufmann K. Intelligent compaction with vibratory rollers: feedback control systems in automatic compaction and compaction control[J]. Transportation Research Record, 2004, 1868(1): 124-134. |
| 29 | Thompson M J, White D J. Estimating compaction of cohesive soils from machine drive power[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(12): 1771-1777. |
| 30 | 张家玲, 徐光辉, 蔡英. 连续压实路基质量检验与控制研究[J]. 岩土力学, 2015, 36(4): 1141-1146. |
| Zhang Jia-ling, Xu Guang-hui, Cai Ying. An investigation on quality inspection and control for continuously compacting subgrade[J]. Rock and Soil Mechanics, 2015, 36(4): 1141-1146. | |
| 31 | Liu D H, Lin M, Li S. Real-time quality monitoring and control of highway compaction[J]. Automation in Construction, 2016, 62: 114-123. |
| 32 | 王涛. 动态系统思想: 理论和语言研究[M]. 南京:东南大学出版社, 2014. |
| 33 | Van Ravenzwaaij D, Cassey P, Brown S D. A simple introduction to Markov Chain Monte-Carlo sampling[J]. Psychonomic Bulletin & Review, 2018, 25 (1): 143-154. |
| 34 | Gal Y, Ghahramani Z. Dropout as a bayesian approximation: representing model uncertainty in deep learning[DB/OL].[2022-10-26].. |
| 35 | Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017. |
| [1] | Lei SHANG,Ping YANG,Xiang-guo YANG,Jian-xin PAN,Jun YANG,Meng-ru ZHANG. Temperature control of proton exchange membrane fuel cell thermal management system based on APSO-BP-PID control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2401-2413. |
| [2] | Chao-lu TEMUR,Ya-ping ZHANG. Link anomaly detection algorithm for wireless sensor networks based on convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2295-2300. |
| [3] | Hong-wei ZHAO,Hong WU,Ke MA,Hai LI. Image classification framework based on knowledge distillation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2307-2312. |
| [4] | Jin-zhou ZHANG,Shi-qing JI,Chuang TAN. Fusion algorithm of convolution neural network and bilateral filtering for seam extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2313-2318. |
| [5] | Sheng-jie ZHU,Xuan WANG,Fang XU,Jia-qi PENG,Yuan-chao WANG. Multi-scale normalized detection method for airborne wide-area remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2329-2337. |
| [6] | Guang-bao LI,Dong GAO,Yong LU,Hao PING,Yuan-yuan ZHOU. Internal surface treatment of gas-liquid-solid technology based on improved neural network and Fluent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1537-1547. |
| [7] | Xi-jun ZHANG,Guang-jie YU,Yong CUI,Ji-yang SHANG. Short-term traffic flow prediction based on clustering algorithm and graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1593-1600. |
| [8] | Xiao-hui WEI,Chen-yang WANG,Qi WU,Xin-yang ZHENG,Hong-mei YU,Heng-shan YUE. Systolic array-based CNN accelerator soft error approximate fault tolerance design [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1746-1755. |
| [9] | Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776. |
| [10] | Xi-guang ZHANG,Long-fei ZHANG,Yu-xi MA,Yin-ting FAN. Design of fuzzy clustering algorithm for massive cloud data based on density peak [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1401-1406. |
| [11] | Chao XIA,Meng-jia WANG,Jian-yue Zhu,Zhi-gang YANG. Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 874-882. |
| [12] | Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332. |
| [13] | Hai-long GAO,Yi-bo XU,Kun LIU,Chun-yang LI,Xiao-yu LU. High-speed highway road network short-term traffic flow parameters based on multi-source data fusion prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 155-161. |
| [14] | Shuang LI,Zi-rui LIN,Song YE,Xu LIU,Ji-song ZHAO. Orbital capability evaluation and trajectory reconstruction for launch vehicle with thrust decline [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2245-2253. |
| [15] | Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387. |
|
||