Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 3037-3049.doi: 10.13229/j.cnki.jdxbgxb.20221518

Previous Articles    

Adaptive content aware spatially-regularized correlation filter for object tracking

Fa-sheng WANG1(),Bing HE1,Fu-ming SUN1(),Hui ZHOU2   

  1. 1.School of Information and Communication Engineering,Dalian Minzu University,Dalian 116600,China
    2.School of Software,Dalian Neusoft University of Information,Dalian 116023,China
  • Received:2022-11-27 Online:2024-10-01 Published:2024-11-22
  • Contact: Fu-ming SUN E-mail:wangfasheng@dlnu.edu.cn;sunfuming@dlnu.edu.cn

Abstract:

In order to solve the annoying boundary effects in correlation filter (CF) trackers induced by cyclic shift when sampling training patches, and improve the tracking performance, an adaptive content aware spatially regularized correlation filter (ACSRCF) is proposed. Firstly, real negative samples are generated from the background area around the target object, so as to alleviate the filter degradation induced by the fake negative samples generated from the circularly shifted object patches. Secondly, the locality sensitive histogram (LSH) based foreground feature is extracted and incorporated with the spatial regularization weight which is updated adaptively according to the varied object-oriented appearances. Thirdly, the CF model is optimized using the alternative direction method of multipliers (ADMM) in which the model is decomposed into two sub-problems and the LSH-based features are used in iteration for obtaining the optimal solutions. Finally, the proposed method is evaluated on 5 public benchmark datasets. The experimental results show that the accuracy and success rate scores of our method on OTB50 dataset are 90.3% and 66.1%, respectively, exceeding the other CF trackers. The data on the OTB100 dataset are 92.2% and 69.2%, and the accuracy ranks first among all the trackers, while the success rate is ahead of other CF trackers.

Key words: computer application, object tracking, correlation filter, adaptive spatial regularization, locality sensitive histogram

CLC Number: 

  • TP391

Fig.1

Visualization of locality sensitive histogram and corresponding statistical illumination invariant feature"

Fig.2

Visualization of adaptive spatial regularization"

Fig.3

Framework of ACSRCF tracker (Solid line represents the tracking procedure,dotted line represents tracking procedure)"

Fig.4

Precision and success plots on OTB50"

Fig.5

Precision and success plots on OTB100"

Fig.6

Precision and success plots on TC128"

Fig.7

Precision and success plots on UAV123"

Fig.8

Precision and success plots on LaSOT"

Fig.9

Visualization of tracking results"

1 Abbass M Y, Kwon K, Kim N, et al. A survey on online learning for visual tracking[J]. Visual Computer, 2021, 37: 993-1014.
2 Liu S, Liu D, Srivastava G, et al. Overview of correlation filter based algorithms in object tracking[J]. Complex & Intelligent Systems, 2021, 7: 1895-1917.
3 Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters[C]∥International Conference on Computer Vision and Pattern Recognition(CVPR), San Francisco, USA, 2010: 2544-2550.
4 Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]∥European Conference on Computer Vision (ECCV), Firenze, Italy, 2012: 702-715.
5 Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596.
6 Bertinetto L, Valmadre J, Golodetz S, et al. Staple: complementary learners for real-time tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, USA, 2016: 1401-1409.
7 Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration[C]∥European Conference on Computer Vision Workshop(ECCVW), Zurich, Switzerland, 2014: 254-265.
8 Tang M, Zheng L, Yu B, et al. Fast kernelized correlation filter without boundary effect[C]∥IEEE Winter Conference on Applications of Computer Vision (WACV), Online, 2021: 2998-3007.
9 黄月平, 李小锋, 杨小冈, 等. 基于相关滤波的视觉目标跟踪算法新进展[J]. 系统工程与电子技术, 2021, 43(8): 2051-2065.
Huang Yue-ping, Li Xiao-feng, Yang Xiao-gang, et al. Advances in visual object tracking algorithm based on correlation filter[J]. Systems Engineering and Electronics, 2021, 43(8): 2051-2065.
10 Galoogahi H K, Fagg A, Lucey S. Learning background-aware correlation filters for visual tracking[C]∥IEEE International Conference on Computer Vision(ICCV), Venice, Italy, 2017: 1144-1152.
11 Zhang F, Ma S, Yu L, et al. Learning future aware correlation filters for efficient uav tracking[J]. Remote Sensing, 2021, 13: 4111.
12 姜文涛, 涂潮, 刘万军. 背景与方向感知的相关滤波跟踪[J]. 中国图象图形学报. 2021, 26(3): 527-541.
Jiang Wen-tao, Tu Chao, Liu Wan-jun. Background and direction-aware correlation filter tracking[J]. Journal of Image and Graphics, 2021, 26(3): 527-541.
13 Danelljan M, Häger G, Khan F S, et al. Learning spatially regularized correlation filters for visual tracking[C]∥IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 4310-4318.
14 Lukežic A, Vojír T, Zajc L C, et al. Discriminative correlation filter with channel and spatial reliability[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, USA, 2017: 4847-4856.
15 Lukežič A, Vojíř T, Zajc L, et al. Discriminative correlation filter tracker with channel and spatial reliability[J]. International Journal of Computer Vision, 2018, 126: 671-688
16 Feng W, Han R, Guo Q, et al. Dynamic saliency-aware regularization for correlation filter-based object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3232-3245.
17 Dai K, Wang D, Lu H, et al. Visual tracking via adaptive spatially-regularized correlation filters[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 4665-4674.
18 谭建豪, 张思远. 基于自适应空间正则化的视觉目标跟踪算法[J]. 计算机研究与发展, 2021, 58(2): 427-435.
Tan Jian-hao, Zhang Si-yuan. Visual tracking algorithm based on adaptive spatial regularization[J]. Journal of Computer Research and Development, 2021, 58(2): 427-435.
19 Zhao J, Li Y, Zhou Z. Learning adaptive spatial-temporal regularized correlation filters for visual tracking[J]. IET Image Processing, 2021, 15: 1758-1773.
20 Zhu X F, Wu X J, Xu T, et al. Complementary discriminative correlation filters based on collaborative representation for visual object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2): 557-568.
21 Wu Y, Lim J, Yang M. Online object tracking: a benchmark[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Portland, USA, 2013: 2411-2418.
22 Wu Y, Lim J, Yang M. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
23 Liang P, Blasch E, Ling H. Encoding color information for visual tracking: algorithms and benchmark[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5630-5644.
24 Mueller M, Smith N, Ghanem B. A benchmark and simulator for UAV tracking[C]∥European Conference on Computer Vision(ECCV), Amsterdam, The Netherlands, 2016: 445-461.
25 Fan H, Lin L, Yang F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 5369-5378.
26 He S, Yang Q, Lau R W H, et al. Fast weighted histograms for bilateral filtering and nearest neighbor searching[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(5): 891-902.
27 He S, Lau R W H, Yang Q, et al. Robust object tracking via locality sensitive histograms[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(5): 1006-1017.
28 Xu T, Feng Z H, Wu X J, et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5596-5609.
29 Han R, Guo Q, Feng W. Content-related spatial regularization for visual object tracking[C]∥IEEE International Conference on Multimedia and Expo (ICME), San Diego, USA, 2018: 1-6.
30 Danelljan M, Bhat G, Khan F S, et al. ECO: efficient convolution operators for tracking[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, 2017: 6931-6939.
31 Li Y, Fu C, Ding F, et al. AutoTrack: towards high-performance visual tracking for uav with automatic spatio-temporal regularization[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 2020: 11920-11929.
32 Zheng G, Fu C, Ye J, et al. Mutation sensitive correlation filter for real-time uav tracking with adaptive hybrid label[C]∥IEEE International Conference on Robotics and Automation(ICRA), Xi'an, China, 2021: 503-509.
33 Huang Z, Fu C, Li Y, et al. Learning aberrance repressed correlation filters for real-time uav tracking[C]∥IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Korea, 2019: 2891-2900.
34 Han R, Feng W, Wang S. Fast learning of spatially regularized and content aware correlation filter for visual tracking[J]. IEEE Transactions on Image Processing, 2020, 29: 7128-7140.
35 Li F, Tian C, Zuo W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4904-4913.
36 Zhang Y, Yang Y, Zhou W, et al. Motion-aware correlation filters for online visual tracking[J]. Sensors, 2018, 18: 3957.
37 曾梦媛, 尚振宏, 刘辉, 等. 融合多层卷积特征自适应更新的目标跟踪算法[J]. 激光与光电子学进展. 2019, 57(2): 113-120.
Zeng Meng-yuan, Shang Zhen-hong, Liu Hui, et al. Target tracking algorithm based on adaptive updating of multilayer convolution features[J]. Laser & Optoelectronics Progress, 2019, 57(2): 113-120.
38 Xu T, Feng Z, Wu X, et al. Adaptive channel selection for robust visual object tracking with discriminative correlation filters[J]. International Journal of Computer Vision, 2021, 129: 1359-1375
39 Chen Z, Zhong B, Li G, et al. Siamese box adaptive network for visual tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 2020: 6667-6676.
40 Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: a unifying approach[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 1328-1338.
41 Li B, Wu W, Wang Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Long Beach, USA, 2019: 4277-4286.
42 Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal Network[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8971-8980.
43 Li P, Chen B, Ouyang W, et al. Gradnet: gradient-guided network for visual object tracking[C]∥IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 2019: 6161-6170.
44 Danelljan M, Häger G, Khan F S, et al. Adaptive decontamination of the training set: a unified formulation for discriminative visual tracking[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 1430-1438.
45 Chen X, Yan B, Zhu J, et al. Transformer tracking[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Online, 2021: 8122-8131.
46 Yan B, Peng H, Fu J, et al. Learning spatio-temporal transformer for visual tracking[C]∥IEEE/CVF International Conference on Computer Vision (ICCV), Online, 2021: 10428-10437.
47 Cao Z, Fu C, Ye J, et al. Hift: hierarchical feature transformer for aerial tracking[C]∥IEEE/CVF International Conference on Computer Vision(ICCV), Online, 2021: 15437-15446.
48 Danelljan M, Robinson A, Shahbaz K F, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]∥European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 472-488.
49 Fu C, Xu J, Lin F, et al. Object saliency-aware dual regularized correlation filter for real-time aerial tracking[J]. IEEE Transactions on Geoscience and Re-mote Sensing, 2020, 58(12): 8940-8951.
50 Li B, Fu C, Ding F, et al. All-day object tracking for unmanned aerial vehicle[J]. IEEE Transactions on Mobile Computing, 2023, 22(8): 4515-4529.
[1] Lu Li,Jun-qi Song,Ming Zhu,He-qun Tan,Yu-fan Zhou,Chao-qi Sun,Cheng-yu Zhou. Object extraction of yellow catfish based on RGHS image enhancement and improved YOLOv5 network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2638-2645.
[2] Hong-wei ZHAO,Hong WU,Ke MA,Hai LI. Image classification framework based on knowledge distillation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2307-2312.
[3] Yun-zuo ZHANG,Yu-xin ZHENG,Cun-yu WU,Tian ZHANG. Accurate lane detection of complex environment based on double feature extraction network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1894-1902.
[4] Ming-hui SUN,Hao XUE,Yu-bo JIN,Wei-dong QU,Gui-he QIN. Video saliency prediction with collective spatio-temporal attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1767-1776.
[5] Yan-feng LI,Ming-yang LIU,Jia-ming HU,Hua-dong SUN,Jie-yu MENG,Ao-ying WANG,Han-yue ZHANG,Hua-min YANG,Kai-xu HAN. Infrared and visible image fusion based on gradient transfer and auto-encoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1777-1787.
[6] Li-ping ZHANG,Bin-yu LIU,Song LI,Zhong-xiao HAO. Trajectory k nearest neighbor query method based on sparse multi-head attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1756-1766.
[7] Li-ming LIANG,Long-song ZHOU,Jiang YIN,Xiao-qi SHENG. Fusion multi-scale Transformer skin lesion segmentation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1086-1098.
[8] Yun-zuo ZHANG,Wei GUO,Wen-bo LI. Omnidirectional accurate detection algorithm for dense small objects in remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1105-1113.
[9] Jin-peng TIAN,Bao-jun HOU. Compressive sensing image reconstruction based on deep unfolding self-attention network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 3018-3026.
[10] Na CHE,Yi-ming ZHU,Jian ZHAO,Lei SUN,Li-juan SHI,Xian-wei ZENG. Connectionism based audio-visual speech recognition method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2984-2993.
[11] Feng-feng ZHOU,Tao YU,Yu-si FAN. Generative adversarial autoencoder integrated voting algorithm based on mass spectral data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2969-2977.
[12] Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600.
[13] Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639.
[14] Yun-zuo ZHANG,Xu DONG,Zhao-quan CAI. Multi view gait cycle detection by fitting geometric features of lower limbs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2611-2619.
[15] Ming-yao XIAO,Xiong-fei LI,Rui ZHU. Medical image fusion based on pixel correlation analysis in NSST domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2640-2648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!