Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3199-3208.doi: 10.13229/j.cnki.jdxbgxb.20230017

Previous Articles    

Distance-decay effects of travel intensity within city clusters

Li-ying WEI1(),Huan-huan PENG1,2   

  1. 1.School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China
    2.Transportation and Safety Research Institute,Zhejiang Scientific Research Institute of Transport,Hangzhou 310023,China
  • Received:2023-01-06 Online:2024-11-01 Published:2025-04-24

Abstract:

There are some problems in travel feature research on the scale of urban agglomeration, such as insufficient basic data and difficult horizontal comparison, thus web crawler is used to obtain some fundamental data such as migration OD flow matrix among the cities in China, and then the cumulative proportion curve features of migration intensity are analyzed. Further, a gravity model is built to fit and analyze the change characteristics of inter-city migration intensity along with distance within different urban agglomerations. This model uses Baidu migration data to represent the inter-city travel intensity, take the shortest road network distance as the distance parameter, and combine with urban permanent population. What's more, the concept of “accessibility” is defined as the average travel time weighted by central city “quality”, then the accessibility under road transport, railway transport and comprehensive transport is calculated respectively and the relationship between accessibility and distance-decay coefficient is analyzed.It is found that the travel distance-decay effects are obvious for most of the city clusters and the migration interactions have reached the city-scale level.

Key words: transportation planning and management, city clusters, migration data, distance-decay effect, gravity model

CLC Number: 

  • U491

Table 1

Error of emigration and immigration scale index"

误差

|(迁出规模指数-迁入规模指数)/迁出规模指数*100%|

城市

个数

城市

占比/%

累计百分比/%
[0,5%)20455.4355.43
[5%,10%)10327.9983.42
[10%,15%)4211.4194.84
[15%,20%)123.2698.10
[20%,40%)71.90100.00
[40%,+∞)00.00100.00

Fig.1

Migration intensity cumulative curve of national city under the distance of road network"

Fig.2

Comparison of cumulative curves of migration intensity of different levels city clusters under the distance road network"

Table 2

R2 Analysis of fitting effects of seven common distance decay functions"

等级城市群名称指数型幂律型高斯型指数截断幂律型对数正态型平方指数型平方根指数型
国家级城市群京津冀城市群0.620.650.570.650.640.580.64
长三角城市群0.290.260.280.290.270.290.28
珠三角城市群0.430.450.380.450.450.390.45
成渝城市群0.170.170.150.170.170.150.18
长江中游城市群0.280.180.280.300.220.290.25
区域级城市群哈长城市群0.470.400.490.580.420.490.44
辽中南城市群0.260.200.220.260.230.230.25
山东半岛城市群0.460.440.450.460.450.450.46
海峡西岸城市群0.540.390.600.800.440.600.48
中原城市群0.200.170.210.220.180.200.19
关中平原城市群0.860.860.870.880.860.860.86
北部湾城市群0.330.250.380.420.270.370.29
天山北坡城市群0.310.310.310.360.320.310.32
地区级城市群呼包鄂榆城市群0.400.430.460.520.520.480.50
兰西城市群0.520.580.560.580.500.650.63
滇中城市群0.390.450.360.400.320.360.25
黔中城市群0.250.300.290.290.320.300.27
晋中城市群0.250.290.320.280.300.360.32
宁夏炎黄城市群0.210.260.290.260.290.320.34

Table 3

Forms of common distance decay functions"

模式函 数
指数型f(dij)=exp(-βdij)(β>0)
幂律型f(dij)=βij-β(β>0)
高斯型f(dij)=βij-βdij2(β>0)
指数截断幂律型f(dij)=exp(-adij)d-β(β>0)
对数正态型f(dij)=exp-βlndij2(β>0)
平方指数型f(dij)=exp(-βdij2)(β>0)
平方根指数型f(dij)=exp(-βdij0.5)(β>0)

Fig.3

Fitting diagram of gravity model of some city clusters"

Table 4

Fitting results of gravity model distance decay function for different city clusters"

城市群等级城市群名称αβR2距离衰减函数
国家级城市群京津冀城市群-1.3161.2370.564y=-1.237x-1.316
长三角城市群-0.5671.7230.604y=-1.723x-0.567
珠三角城市群-0.4111.6840.559y=-1.684x-0.411
成渝城市群+2.4651.9820.783y=-1.982x+2.465
长江中游城市群+3.8192.4050.757y=-2.405x+3.819
区域级城市群哈长城市群+5.3372.2680.589y=-2.268x+5.337
辽中南城市群-1.6931.0450.552y=-1.045x-1.693
山东半岛城市群+0.8481.7000.832y=-1.700x+0.848
海峡西岸城市群+2.8882.2290.889y=-2.229x+2.888
中原城市群+3.3212.3040.709y=-2.304x+3.321
关中平原城市群+40.252.1690.662y=-2.169x+4.025
北部湾城市群+8.0932.9210.772y=-2.921x+8.093
天山北坡城市群-1.9930.8130.275y=-0.813x-1.993
地区级城市群呼包鄂榆城市群+10.0453.2670.693y=-3.267x+10.045
兰西城市群+10.9603.1380.636y=-3.138x+10.959
滇中城市群+0.9481.4920.522y=-1.492x+0.948
黔中城市群+3.1631.8060.692y=-1.806x+3.163
晋中城市群-0.0791.2200.523y=-1.220x-0.079
宁夏炎黄城市群0.8141.1060.361y=-1.106x+0.814

Table 5

Calculation results of accessibility of city clusters"

城市群等级城市群名称中心城市β公路运输可达性/h铁路运输可达性/h综合运输可达性/h
国家级城市群京津冀城市群北京市、天津市、石家庄1.2372.3031.3901.803
长三角城市群上海市、杭州市、南京市、合肥市1.7232.5181.4521.944
珠三角城市群广州市1.6840.9060.4950.786
成渝城市群重庆市、成都市1.9822.5051.4101.715
长江中游城市群武汉市、长沙市、南昌市2.4053.1492.0782.329
区域级城市群哈长城市群哈尔滨、长春市2.2682.7722.0672.410
辽中南城市群沈阳市、大连市1.0452.7801.4211.973
山东半岛城市群济南市、青岛市1.7002.9931.7622.030
海峡西岸城市群福州市、厦门市2.2292.7670.5881.947
中原城市群郑州市2.3041.3480.6751.217
关中平原城市群西安市2.1691.8141.2331.519
北部湾城市群南宁市、海口市2.9213.0664.0563.477
地区级城市群呼包鄂榆城市群呼和浩特市3.2672.9263.3853.270
兰西城市群西宁市、兰州市3.1381.7951.8501.830
滇中城市群昆明市1.4921.6031.1741.426
黔中城市群贵阳市1.8061.4670.9451.453
晋中城市群太原市1.2201.2810.7900.914

Fig.4

Relationship between distance decay coefficient and traffic accessibility"

1 冯慧芳,柏凤山,徐有基. 基于轨迹大数据的城市交通感知和路网关键节点识别[J]. 交通运输系统工程与信息, 2018, 18(3): 42-47.
Feng Hui-fang, Bai Feng-shan, Xu You-ji. Urban traffic perception and critical node identification of road network based on trajectory big data[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 42-47.
2 贾洪飞, 郭明雪, 罗清玉, 等. GPS数据下的城市路网关键路段识别[J].吉林大学学报: 工学版, 2020, 50(4): 1338-1343.
Jia Hong-fei, Guo Ming-xue, Luo Qing-yu, et al. Identifying critical links of urban road netwoks based on GPS data[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1338-1343.
3 Ding F, Zhang Z, Zhou Y, et al. Large-scale full-coverage traffic speed estimation under extreme traffic conditions using a big data and deep learning approach: case study in China[J]. Transportation Engineering Part A Systems, 2019, 145(5): 05019001.
4 李自圆, 孙昊, 李林波. 基于手机信令数据的长三角全域城际出行网络分析[J]. 清华大学学报: 自然科学版, 2022, 62(7): 1203-1211.
Li Zi-yuan, Sun Hao, Li Lin-bo. Analysis of intercity travel in the yangtze river delta based on mobile signaling data[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7): 1203-1211.
5 Shang Y, Li X G, Jia B, et al. Freeway traffic state estimation method based on multisource data[J]. Journal of Transportation Engineering Part A Systems, 2022, 148(4): 4022005.
6 Soriguera F, Rosas D, Robuste F. Travel time measurement in closed toll highways[J]. Transportation Research Part B Methodological, 2010, 44(10): 1242-1267.
7 Lu X J, Ma C X. The impact of inter-city traffic restriction on COVID-19 transmission from spatial econometric perspective[J]. Promet-traffic & Transportation, 2021, 33(5): 705-716.
8 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869.
Wang Lu-cang, Liu Hai-yang, Liu Qing. China's city network based on Tencent's migration big data[J]. Acta Geographica Sinica, 2021, 76(4): 853-869.
9 Xu X L, Wang S H, Dong J H, et al. An analysis of the domestic resumption of social production and life under the COVID-19 epidemic[J]. Plos One, 2020, 15(7): 0236387.
10 项昀, 徐铖铖, 于维杰, 等. 基于人口迁徙大数据的城市对外交通客运方式优势出行距离研究[J]. 交通运输系统工程与信息, 2020, 20(1): 241-246.
Xiang Yun, Xu Cheng-cheng, Yu Wei-jie, et al. Dominant trip distance of urban external passenger transport mode based on big data of migration[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 241-246.
11 王聪, 严洁. 百度迁徙规模指数构造方法反演[J]. 电子科技大学学报, 2021, 50(4): 616-626.
Wang Cong, Yan Jie. An inversion of the constitution of the Baidu migration scale index[J]. Journal of University of Electronic Science and Technology of China, 2021, 50(4): 616-626.
12 项昀, 王炜, 郑敦勇, 等. 区域综合网络货运交通方式的优势运距研究[J]. 交通运输系统工程与信息, 2016, 16(6): 33-39.
Xiang Yun, Wang Wei, Zheng Dun-yong, et al. Dominant transportation distance for multi transportation modes in regional integrated freight network[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 33-39.
13 方创琳. 中国城市群地图集[M]. 北京: 科学出版社, 2020.
14 陈卓, 金凤君, 杨宇, 等. 高速公路流的距离衰减模式与空间分异特征——基于福建省高速公路收费站数据的实证研究[J]. 地理科学进展, 2018, 37(8): 1086-1095.
Chen Zhuo, Jin Feng-jun, Yang Yu, et al. Distance-decay pattern and spatial differentiation of expressway flow: an empirical study using data of expressway toll station in Fujian Province[J]. Progress in Geography, 2018, 37(8): 1086-1095.
15 刘瑜, 龚俐, 童庆禧. 空间交互作用中的距离影响及定量分析[J]. 北京大学学报: 自然科学版, 2014, 50(3): 526-534.
Liu Yu, Gong Li, Tong Qing-xi. Quantifying the distance effect in spatial interactions[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 526-534.
16 Hansen W G. How accessibility shapes land use[J]. Journal of the American Institute of Planners, 1959, 25(2): 73-76.
17 徐明非, 欧晓培, 王元庆. 城市群公路可达性与衔接提升研究[J]. 中国公路学报, 2020, 33(11): 245-254.
Xu Ming-fei, Xiao-pei Ou, Wang Yuan-qing. Study on highway accessibility of urban agglomerations and its connection improvement[J]. China Journal of Highway and Transport, 2020, 33(11): 245-254.
18 戢晓峰, 郝京京, 陈方. 综合运输可达性与物流经济的空间分异及耦合[J]. 交通运输系统工程与信息, 2015, 15(5): 24-31.
Ji Xiao-feng, Hao Jing-jing, Chen Fang. Spatial differentiation and coupling between integrated transport accessibility and logistics economy[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 24-31.
[1] Tian-yang GAO,Da-wei HU,Rui-sen JIANG,Xue WU,Hui-tian LIU. Optimization study of zonal-based flexible feeder bus routes based on modular vehicle system [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 537-545.
[2] Shu-hong MA,Jun-jie ZHANG,Xi-fang CHEN,Guo-mei LIAO. Identifying urban functional structures using time-series taxi data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 603-613.
[3] Yu-ran LI,Fei WANG,Cai-hua ZHU,Fei HAN,Yan LI. Chain-effect utility of factors influencing residents' commuting mode choice in polluted weather [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 577-590.
[4] Hui-zhi XU,Shi-sen JIANG,Xiu-qing WANG,Shuang CHEN. Vehicle target detection and ranging in vehicle image based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 185-197.
[5] Chang-jiang ZHENG,Tong-tong TAO,Zhi-chao CHEN. Cascading failure model based on adjustable redistribution of traffic flow [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2441-2450.
[6] Xiao-yue WEN,Guo-min QIAN,Hua-hua KONG,Yue-jie MIU,Dian-hai WANG. TrafficPro: a framework to predict link speeds on signalized urban traffic network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2214-2222.
[7] Yun-juan YAN,Wei-xiong ZHA,Jun-gang SHI,Li-ping YAN. Double layer optimization model of charging pile based on random charging demand [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2238-2244.
[8] Da-yi QU,Hao-min LIU,Zi-yi YANG,Shou-chen DAI. Dynamic allocation mechanism and model of traffic flow in bottleneck section based on vehicle infrastructure cooperation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2187-2196.
[9] Gui-zhen CHEN,Hui-ting CHENG,Cai-hua ZHU,Yu-ran LI,Yan LI. A risk evaluation method for urban intersections considering drivers' physiological information [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1277-1284.
[10] Xiao-hua ZHAO,Chang LIU,Hang QI,Ju-shang OU,Ying YAO,Miao GUO,Hai-yi YANG. Influencing factors and heterogeneity analysis of highway traffic accidents [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 987-995.
[11] Xiu-jian YANG,Xiao-han JIA,Sheng-bin ZHANG. Characteristics of mixed traffic flow taking account effect of dynamics of vehicular platoon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 947-958.
[12] Bo-song FAN,Chun-fu SHAO. Urban rail transit emergency risk level identification method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 427-435.
[13] Chang-jiang ZHENG,Huan HU,Mu-qing DU. Design of multimodal express delivery network structure considering hub failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2304-2311.
[14] Dian-hai WANG,You-wei HU,Zheng-yi CAI,Jia-qi ZENG,Wen-bin YAO. Dynamic road resistance model of intermittent flow on urban roads based on BPR function [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1951-1961.
[15] Yan-bo LI,Bai-song LIU,Bo-bin YAO,Jun-shuo CHEN,Kai-fa QU,Qi-sheng WU,Jie-ning CAO. Location of electrical changing station of expressway considering stochastic characteristics of road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1364-1371.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!