Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 883-889.doi: 10.13229/j.cnki.jdxbgxb.20220614

Previous Articles     Next Articles

Analysis of merging behavior based on random parameter model with heterogeneity in variances

Lan WU(),Le ZHAO,Gen LI()   

  1. College of Automobile and Traffic Engineering,Nanjing Forestry University,Nanjing 210037,China
  • Received:2022-05-19 Online:2024-04-01 Published:2024-05-17
  • Contact: Gen LI E-mail:wulan@njfu.edu.cn;ligen@njfu.edu.cn

Abstract:

In order to study the merging behavior of vehicles in the interweaving area of a freeway, a random parameter model with heterogeneity in variances was used to build a vehicle lane-changing model. Seven explanatory variables that had a significant effect on lane-changing behavior statistically, extracted from NGSIM dataset, was introduced to random parameter model with heterogeneity in variances. The potential heterogeneity was explored by the model. The average margin effects were calculated to quantify the effects of explanatory variables on lane-changing behavior, and individual sample accuracy was established to compare the model accuracy. The results of the study indicate that the space headway between the merging vehicle and the putative leading vehicle, the width of the putative leading vehicle and the speed of the leading vehicle in the auxiliary lane have significant effects on lane-changing behavior, and the longitudinal position of the merging vehicle affects significantly the space headway between the merging vehicle and the putative leading vehicle. Compared with random parameter model that don't consider the variance heterogeneity and binary logit model, random parameter model with heterogeneity in variances has the highest goodness of fit and model accuracy, and can better explain the unobserved heterogeneity during the lane-changing. The results of this paper can be applied to the autonomous driving assistance system and traffic flow simulation software and can shed light on the mechanism of lane-changing behavior.

Key words: transportation safety engineering, random parameter model with heterogeneity in variance, merging behavior, freeway, interweaving area

CLC Number: 

  • U491.2

Fig.1

Schematic diagram of US-101 section"

Table 1

Descriptive of candidate explanatory variables"

变量名称变量解释
V/(m·s-1M车车速
V1/(m·s-1PL车车速
V2/(m·s-1PF车车速
V3/(m·s-1L车在辅助车道上的速度
ΔV1/(m·s-1M车和PL车速度差
ΔV2/(m·s-1M车和PF车速度差
ΔV3/(m·s-1M车和L车速度差
ΔD/mPL车与PF车纵向距离差
ΔD1/mM车与L车车头间距
ΔD2/mM车与PL车头间距
ΔX1/mM车与PL车横向距离差
ΔX2/mM车与PF车横向距离差
L1/mPL车长度
L2/mPF车长度
W1/mPL车宽度
W2/mPF车宽度
Y/mM车辅助车道上纵向位置

Table 2

Comparison of distribution forms of random parameters"

分布形式威布尔分布正态分布对数正态分布
含随机参数的变量ΔD2V3ΔD2V3W1ΔD2
AIC592.4586.2591.7
McFadden Pseudo R20.5510.5580.550
对数似然函数值-286.21-282.11-286.87

Table 3

Comparison of model performance indictor"

二元Logit

模型

随机参数

模型

方差异质性随机参数模型
AIC599.9586.2569.5
BIC638.5639.29627.35
McFadden Pseudo R20.5300.5580.572
对数似然函数值-291.93-282.11-272.73
样本精度86.41%87.28%87.39%
个体样本精度71.58%73.99%75.07%

Table 4

Model parameter estimation results"

解释变量二元Logit模型随机参数模型方差异质性随机参数模型
系数P系数P系数P
ΔV1-0.6020.00-0.9230.00-1.0330.00
ΔX2-1.0630.00-1.5640.00-1.6720.00
V3-0.0940.00-0.108(0.080)0.00 (0.03)-0.125 (0.089)0.01(0.07)
ΔD10.0160.000.0210.000.0210.03
Y0.0110.000.0250.000.0200.02
ΔD20.1270.000.220(0.076)0.000 (0.00)0.274(0.200)0.00(0.00)
方差ΔD2:Y//-0.0180.01
W1-1.1120.00-1.590(0.562)0.01 (0.06)-1.964(0.631)0.01(0.10)
常数项5.5690.007.6050.008.8030.00

Table 5

Marginal effects of variables of random parameter model with heterogeneity in variances"

变量边际效应/%变量边际效应/%
ΔV1-21.5Y6.14
ΔX2-32.18ΔD222.4
V3/ΔD1-7.05/4.3W1-21

Fig.2

Probability density of random parameter W1"

Fig.3

Probability density of random parameter V3"

Fig.4

Probability density of random parameter ΔD2"

1 孙剑,李克平,杨晓光.拥挤交通流交织区车道变换行为仿真[J].系统仿真学报,2009,21(13):4174-4178, 4182.
Sun Jian, Li Ke-Ping, Yang Xiao-guang. Simulation of lane-changing behavior in congested traffic flow of the interweaving area[J]. Journal of System Engineering Simulation, 2009, 21(13): 4174-4178, 4182.
2 Chang G L, Kao Y M. An empirical investigation of macroscopic lane-changing characteristics on uncongested multilane freeways[J]. Transportation Research Part A: General, 1991, 25(6): 375-389.
3 Laval J A, Leclercq L. Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model[J]. Transportation Research Part B: Methodological, 2008, 42(6): 511-522.
4 Bham G H. A simple lane change model for microscopic traffic flow simulation in weaving sections[J]. Transportation Letters: the International Journal of Transportation Research, 2011, 3(4): 231-251.
5 Hou Y, Edara P, Sun C. A genetic fuzzy system for modeling mandatory lane changing[C]//The 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), New York, United States, 2012: 1044-1048.
6 Rahman M, Chowdhury M, Xie Y, et al. Review of microscopic lane-changing models and future research opportunities[J]. Ieee Transactions on Intelligent Transportation Systems, 2013, 14(4): 1942-1956.
7 Li G, Yang Z, Yu Q, et al. Characterizing heterogeneity among merging positions: comparison study between random parameter and latent class accelerated hazard model[J]. Journal of Transportation Engineering, Part A: Systems, 2021, 147(6):No. 4021029.
8 Zhou H, Sun Y, Qin X, et al. Modeling discretionary lane-changing behavior on urban streets considering drivers' heterogeneity[J]. Transportation Letters, 2020, 12(3): 213-222.
9 Keyvan-Ekbatani M, Knoop V L, Daamen W. Categorization of the lane change decision process on freeways[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 515-526.
10 Li G. Application of finite mixture of logistic regression for heterogeneous merging behavior analysis[J]. Journal of Advanced Transportation, 2018(7): No.1436521.
11 Li G, Pan Y Y, Yang Z, et al. Modeling vehicle merging position selection behaviors based on a finite mixture of linear regression models[J]. IEEE Access, 2019, 7: 158445-158458.
12 Mannering F, Shankar V, Bhat C R. Unobserved heterogeneity and the statistical analysis of highway accident data[J]. Analytic Methods in Accident Research, 2016, 11: 1-16.
13 Seraneeprakarn P, Huan G S, Shankar V, et al. Occupant injury severities in hybrid-vehicle involved crashes: A random parameters approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2017, 15: 41-55.
14 Yu M, Zheng C J, Ma C X. Analysis of injury severity of rear-end crashes in work zones: A random parameters approach with heterogeneity in means and variances[J]. Analytic Methods in Accident Research, 2020, 27:No. 100126.
15 Chen T Y, Shi X P, Wong Y D. Key feature selection and risk prediction for lane-changing behaviors based on vehicles' trajectory data[J]. Accident Analysis and Prevention, 2019, 129: 156-169
16 李华民, 黄海军, 刘剑锋. 混合Logit模型的参数估计与应用研究[J]. 交通运输系统工程与信息, 2010, 10(5): 73-78.
Li Hua-min, Huang Hai-jun, Liu Jian-feng. Parameter estimation and application research of mixed Logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(5): 73-78.
17 宋栋栋,杨小宝,祖兴水,等.基于均值异质性随机参数Logit模型的城市道路事故驾驶员受伤严重程度研究[J].交通运输系统工程与信息,2021,21(3): 214-220.
Song Dong-dong, Yang Xiao-bao, Zu Xing-shui, et al. Research on the injury severity of drivers in urban road accidents based on mean heterogeneity random parameter Logit model[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 214-220.
18 王荣本,游峰,崔高健,等.车辆安全换道分析[J].吉林大学学报:工学版,2005,35(2):179-182.
Wang Rong-ben, You Feng, Cui Jian-gao, et al. Analysis on lane-changing safety of vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2005,35 (2): 179-182.
19 贾洪飞,谭云龙,李强,等.考虑驾驶员特征的快速路合流区间隙接受模型构建[J].吉林大学学报:工学版,2015,45(1):55-61.
Jia Hong-fei, Tan Yun-long, Li Qiang, et al. Gap acceptance model of expressway weaving area based on driver characteristics[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(1): 55-61.
[1] Jie HE,Chang-jian ZHANG,Xin-tong YAN,Chen-wei WANG,Yun-tao YE. Analyzing traffic crash risk of freeway characteristics based on micro⁃kinetic parameters [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 162-172.
[2] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[3] Yi HE,Chang-xin SUN,Jian-hua PENG,Chao-zhong WU,Liang JIANG,Ming MA. Risk behaviors and influencing factors of cargo electric tricycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 413-420.
[4] Jie-yu ZHU,Yan-li MA. Real-time risk assessment method of multi-vehicle interaction at merging area [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1574-1581.
[5] DAI Cun-jie,LI Yin-zhen,MA Chang-xi,CHAI Huo,MU Hai-bo. Multi-criteria optimization for hazardous materials distribution routes under uncertain conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1694-1702.
[6] SUN Zong-yuan, FANG Shou-en. Hierarchical clustering algorithm of moving vehicle trajectories in entrances and exits freeway [J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
[7] LI Peng-hui, ZHANG Wen-hui, HU Meng-xia, LI Yi-bing, WU Biao. Analysis on saccade behavior of driver during overtaking on freeway [J]. 吉林大学学报(工学版), 2016, 46(1): 114-119.
[8] SUN Lu, XU Jian, CUI Xiang-min. Panel data models for analysis and prediction of crash count [J]. 吉林大学学报(工学版), 2015, 45(6): 1771-1778.
[9] XU Jian, SUN Lu. Modeling of excess zeros issue in crash count andysis [J]. 吉林大学学报(工学版), 2015, 45(3): 769-775.
[10] YANG Qing-fang, MA Ming-hui, YANG Ju-fen, BING Qi-chun, LIANG Shi-dong. Analysis of the traffic flow operating stability on highway [J]. 吉林大学学报(工学版), 2014, 44(6): 1596-1603.
[11] JIN Li-sheng, WANG Yan, LIU Jing-hua, WANG Ya-li, ZHENG Yi. Front vehicle detection based on Adaboost algorithm in daytime [J]. 吉林大学学报(工学版), 2014, 44(6): 1604-1608.
[12] JIN Li-sheng,NIU Qing-ning,LIU Jing-hua,QIN Yan-guang,YU Huan-huan. Driver cognitive distraction detection in different road lines [J]. 吉林大学学报(工学版), 2014, 44(3): 642-647.
[13] ZHAN Wei, LYU Qing, SHANG Yue-quan. Analysis of gray-Markov forecasting for traffic accidents in highway tunnel group region [J]. 吉林大学学报(工学版), 2014, 44(01): 62-67.
[14] XU Cheng-cheng, LIU Pan, WANG Wei, LI Zhi-bin. Real time crash risk prediction model on freeways under nasty weather conditions [J]. 吉林大学学报(工学版), 2013, 43(01): 68-73.
[15] ZHANG Wen-hui, XU Hong-guo. Speed-limit scheme of traffic accident scene road section on freeway [J]. 吉林大学学报(工学版), 2012, 42(02): 316-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!