| 1 |
周鹏, 杨军. 采用神经网络架构搜索的遥感影像分割方法[J]. 西安电子科技大学学报, 2021, 48(5): 47-57, 77.
|
|
Zhou Peng, Yang Jun. Semantic segmentation of remote sensing images based on neural architecture search[J]. Journal of Xidian University, 2021, 48(5): 47-57, 77.
|
| 2 |
张晓东, 张力飞, 陈关州, 等. 基于深度学习的遥感影像地物目标检测和轮廓提取一体化模型[J]. 测绘地理信息, 2019, 44(6): 1-5.
|
|
Zhang Xiao-dong, Zhang Li-fei, Chen Guan-zhou, et al. An integrated model of object detection and contour extraction based on deep learning [J]. Journal of Geomatics, 2019, 44(6): 1-5.
|
| 3 |
田婷婷, 杨军. 基于多尺度特征融合网络的遥感影像目标检测[J]. 激光与光电子学进展, 2022, 59(16): 427-435.
|
|
Tian Ting-ting, Yang Jun. Object detection for remote sensing image using multi-scale feature fusion network[J]. Laser & Optoelectronics Progress, 2022, 59(16): 427-435.
|
| 4 |
Cao Y, Niu X, Dou Y. Region-based convolutional neural networks for object detection in very high-resolution remote sensing images[C]∥IEEE International Conference on Natural Computation, Hawaii, USA, 2016: 548-554.
|
| 5 |
Li K, Cheng G, Bu S, et al. Rotation-insensitive and context-augmented object detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2337-2348.
|
| 6 |
Zhong Y, Han X, Zhang L. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 281-294.
|
| 7 |
Chen Z, Zhang T, Ouyang C. End-to-end airplane detection using transfer learning in remote sensing images[J]. Remote Sens, 2018, 10: No.139.
|
| 8 |
Liu W, Ma L, Chen H. Arbitrary-oriented ship detection framework in optical remote-sensing images [J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(6): 937-41.
|
| 9 |
Zoph B, Le Q V. Neural architecture search with reinforcement learning[DB/OL]. [2016-11-05].
|
| 10 |
Zoph B, Vasudevan V, Shlens J, et al. Learning transferable architectures for scalable image recognition[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8697-8710.
|
| 11 |
Real E, Aggarwal A, Huang Y, et al. Regularized evolution for image classifier architecture search[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 4780-4789.
|
| 12 |
Liu H, Simonyan K, Yang Y. DARTS: differentiable architecture search[C]∥International Conference on Learning Representations, Vancouver, Canada, 2018: 6-9.
|
| 13 |
Ghiasi G, Lin T Y, Le Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection [C] ∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 7036-7045.
|
| 14 |
Wang N, Gao Y, Chen H, et al. NAS-FCOS: fast neural architecture search for object detection [C] ∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11940-11948.
|
| 15 |
Xu A, Yao A, Li A, et al. Auto-FPN: automatic network architecture adaptation for object detection beyond classification[C]∥IEEE/CVF International Conference on Computer Vision, Venice, Italy, 2020: 6648-6657.
|
| 16 |
Cao L, Zhang X, Wang Z. Arbitrary-oriented object detection on high-resolution images based on differentiable architecture search [J]. Canadian Journal of Remote Sensing, 2021, 47(5): 719-30.
|
| 17 |
Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[J/OL]. [2022-11-12].
|
| 18 |
Xia G S, Bai X, Ding J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3974-3983.
|
| 19 |
Li K, Wan G, Cheng G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
|
| 20 |
Long Y, Gong Y, Xiao Z, et al. Accurate object localization in remote sensing images based on convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 2486-2498.
|
| 21 |
Xiao Z, Liu Q, Tang G, et al. Elliptic Fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images[J]. International Journal of Remote Sensing, 2015, 36(2): 618-644.
|
| 22 |
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
| 23 |
Rossi L, Karimi A, Prati A. A novel region of interest extraction layer for instance segmentation[C]∥IEEE International Conference on Pattern Recognition, Chengdu, China, 2021: 2203-2209.
|
| 24 |
Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5693-5703.
|
| 25 |
Wightman R, Touvron H, Jégou H. Resnet strikes back: an improved training procedure in timm [DB/OL].[2021-10-01].
|
| 26 |
Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980-2988.
|