1 |
Matsuda Y, Hoashi H, Yanai K. Recognition of multiplefood images by detecting candidate regions[C]∥IEEE International Conference on Multimedia and Expo, Melbourne, Australia, 2012: 25-30.
|
2 |
车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报: 工学版, 2018, 48(5): 1621-1628.
|
|
Che Xiang-jiu, Wang Li, Guo Xiao-xin. Improved boundary detection based on multiscale cues fusion[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
|
3 |
Redmon J, Divvala S, Girshick R, et al. You only look once: unified, realtime object detection[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779-788.
|
4 |
Ege T, Yanai K. Estimating food calories for multipledish food photos[C]∥4th IAPR Asian Conference on Pattern Recognition, Nanjing, China, 2017: 646-651.
|
5 |
车翔玖, 刘华罗, 邵庆彬. 基于Fast RCNN改进的布匹瑕疵识别算法[J]. 吉林大学学报: 工学版, 2019, 49(6): 2038-2044.
|
|
Che Xiang-jiu, Liu Hua-luo, Shao Qing-bin. Fabric defect recognition algorithm based on improved Fast RCNN[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044.
|
6 |
Shimoda W, Yanai K. Foodness proposal for multiple food detection by training of single food images[C]∥Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, Amsterdam, The Netherlands, 2016: 13-21.
|
7 |
Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: optimal speed and accuracy of object detection[J/OL]. [2020-04-23].
|
8 |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2016: 770-778.
|
9 |
Huang G, Liu S, van der Maaten L, et al. Condensenet: an efficient densenet using learned group convolutions[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 2752-2761.
|
10 |
Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(1): 142-158.
|
11 |
Girshick R. Fast r-cnn[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1440-1448.
|
12 |
Ren S, He K, Girshick R, et al. Faster r-cnn: towards realtime object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 91-99.
|
13 |
Redmon J, Farhadi A. Yolov3: an incremental improvement[J/OL]. [2018-04-08].
|
14 |
Everingham M, van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
|
15 |
Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510-4520.
|
16 |
Howard A G, Zhu M, Chen B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv Preprint arXiv:,2017.
|
17 |
Stergiou A, Poppe R, Kalliatakis G. Refining activation downsampling with Softpool[J].[2021-03-18].
|
18 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 5: 5998-6008.
|
19 |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
|
20 |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision, Munich, Germany, 2018: 3-19.
|
21 |
Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 13713-13722.
|
22 |
Zhou B, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2921-2929.
|