Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (3): 1009-1014.doi: 10.13229/j.cnki.jdxbgxb.20240077

Previous Articles     Next Articles

k⁃prototype clustering algorithm and privacy protection for sensitive data republishing under relative entropy

Qi-liang ZHU(),Xue-ting YU   

  1. School of Information Engineering,North China University of Water Resources and Electric Power,Zhengzhou 450046,China
  • Received:2024-01-22 Online:2025-03-01 Published:2025-05-20

Abstract:

In order to effectively ensure the security and privacy of sensitive attribute data republication, a privacy protection method for sensitive attribute data republication based on k-prototype clustering algorithm and relative entropy is proposed. Based on the type attributes of sensitive attribute data, fast clustering is used to calculate the distance between each data type attribute, and k-prototype clustering algorithm is used to cluster sensitive attribute data. Using relative entropy to calculate the sensitivity of sensitive attribute data after clustering, a weighted multi-dimensional bucket group is constructed based on the sensitivity to unfold sensitive attribute data and republish it anonymously, ultimately achieving the goal of privacy protection. The experimental results show that the proposed method can effectively reduce the concealment rate, information loss, and information disclosure of private data, improve the degree of privacy protection for sensitive attribute data republishing, and ensure the security of data.

Key words: k-prototype clustering algorithm, relative entropy, sensitive attribute data, republish, privacy protection

CLC Number: 

  • TP393

Fig.1

Experimental environment"

Fig.2

Changes in the degree of additional information loss and concealment rate under different data volumes"

Fig.3

Comparison of RL test results of three methods under different data volumes"

Table 1

Security analysis of three different methods"

攻击方式本文方法文献[3]方法文献[4]方法
侧信道攻击
机器学习攻击
差分攻击×
链接攻击
恶意软件攻击
数据篡改攻击×
拒绝服务攻击
1 郝玉蓉, 朴春慧, 颜嘉麒, 等. 一种面向LDP的政府民意数据隐私保护方法[J].计算机仿真, 2023, 40(3): 377-384.
Hao Yu-rong, Chun-hui Piao, Yan Jia-qi,et al. An LDP-oriented privacy protection approach for government polls data[J]. Computer Simulation, 2023,40(3): 377-384.
2 于群, 沈志恒, 孙飞飞, 等.面向云计算应用的用电负荷数据差分隐私保护方法[J]. 电力自动化设备,2022, 42(7): 68-75.
Yu Qun, Shen Zhi-heng, Sun Fei-fei, et al. Differential privacy protection method of electrical load data towards cloud computing applications[J]. Electric Power Automation Equipment, 2022, 42(7): 68-75.
3 张星, 张兴, 王晴阳. DP-IMKP:满足个性化差分隐私的数据发布保护方法[J]. 计算机工程与应用, 2023, 59(10): 288-298.
Zhang Xing, Zhang Xing, Wang Qing-yang. DP-IMKP:Data publishing protection method for personalized differential privacy[J]. Computer Engineering and Applications, 2023,59(10): 288-298.
4 李莉, 杜慧娜, 李涛. 基于群签名与属性加密的区块链可监管隐私保护方案[J]. 计算机工程, 2022, 48(6): 132-138.
Li Li, Du Hui-na, Li Tao. A blockchain regulatory privacy protection scheme based on group signature and attribute encryption[J]. Computer Engineering, 2022, 48(6): 132-138.
5 Raju N V S L, Naresh V S. Dynamic distributed KC_i-slice data publishingmodel with multiple sensitive attributes[J]. Concurrency and Computation: Practice and Experience, 2022, 34(21): e7064.1-e7064.25.
6 Parashar A, Shekhawat R S. Protection of gait data set for preserving its privacy in deep learning pipeline[J]. IET Biometrics, 2022, 11(6):557-569.
7 杜秀丽, 姜晓虎, 孙晨瞳, 等. 基于方向性多重假设检验和信息熵的函数型数据聚类新方法[J]. 南京师大学报:自然科学版, 2022, 45(4): 1-9.
Du Xiu-li, Jiang Xiao-hu, Sun Chen-tong, et al. A new functional data clustering method based on directional multiple hypothesis test and information entropy[J]. Journal of Nanjing Normal University(Natural Science Edition), 2022, 45(4): 1-9.
8 菊花. 基于改进磷虾群算法的多目标文本聚类方法[J].计算机工程与设计, 2022, 43(6): 1694-1703.
Ju Hua. Multi-objective text clustering method based on improved krill herd algorithm[J]. Computer Engineering and Design, 2022, 43(6): 1694-1703.
9 章曼, 张正军, 冯俊淇, 等. 基于自适应可达距离的密度峰值聚类算法[J]. 计算机应用, 2022, 42(6):1914-1921.
Zhang Man, Zhang Zheng-jun, Feng Jun-qi, et al. Density peak clustering algorithm based on adaptive reachable distance[J]. Journal of Computer Applications, 2022, 42(6): 1914-1921.
10 袁欣, 俞卫琴, 王国强. 基于希尔伯特相似度的高维面板数据聚类方法及应用[J]. 统计与决策, 2022, 38(17): 52-54.
Yuan Xin, Yu Wei-qin, Wang Guo-qiang. Hilbert similarity-based high-dimensional panel data clustering method and its application[J]. Statistics & Decision, 2022, 38(17): 52-54.
[1] Da-juan FAN,Zhi-qiu HUANG,Yan CAO. Adaptive access control method for SaaS privacy protection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2897-2908.
[2] Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665.
[3] DENG Jian-xun, XIONG Zhong-yang, DENG Xin. Improved DNALA algorithm based on spectral clustering matrix [J]. 吉林大学学报(工学版), 2018, 48(3): 903-908.
[4] CAI Zhao-hui, ZHANG Jian-pei, YANG Jing. Anonymous area estimation method of path data based on Bayesian network [J]. 吉林大学学报(工学版), 2014, 44(2): 454-458.
[5] GUO Li-hua. The salient region extraction method based on relative entropy difference [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 270-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hua CHEN,Yao-jia CHEN,Bin XIE,Peng-kai WANG,Lang-ni DENG. Interface failure mechanism and bonding strength calculation of CFRP tendons bonded anchorage system[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1698 -1708 .
[2] Ji-hai JIANG,Cun-ran ZHAO,Guan-long ZHANG,Ming-yang CHE. Tribological properties of coating materials of tribopairs for aviation kerosene piston pump[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 147 -153 .
[3] Wei WANG,Jian-ting ZHAO,Kuan-rong HU,Yong-cang GUO. Trajectory tracking of robotic manipulators based on fast nonsingular terminal sliding mode[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 464 -471 .
[4] Guang-ming NIE,Bo XIE,Yan-tao TIAN. Design of cooperative adaptive cruise control algorithm based on Frenet framework[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1687 -1695 .
[5] Fang⁃wu MA,Shi⁃xian CHEN,Lu HAN,Hong⁃yu LIANG,Yong⁃feng PU. Correlation between metal surface morphology and metal⁃plastic direct adhesion strength[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 816 -821 .
[6] Wen-li JI,Zhong TIAN,Jing CHAI,Ding-ding ZHANG,Bin WANG. Prediction of water⁃flowing height in fractured zone based on distributed optical fiber and multi⁃attribute fusion[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1200 -1210 .
[7] MA Miao, LI Yi-bin. Multi-level image sequences and convolutional neural networks based human action recognition method[J]. 吉林大学学报(工学版), 2017, 47(4): 1244 -1252 .
[8] Shao-biao XIE,Yu ZHANG,Kai-rui WEN,Shuo ZHANG,Zong-ming LIU,Nai-ming QI. Motion estimation for non-cooperative target based on strong tracking cubature Kalman filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1482 -1489 .
[9] Zhi-hua LI,Ye-chao ZHANG,Guo-hua ZHAN. Realtime mosaic and visualization of 3D underwater acoustic seabed topography[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 180 -186 .
[10] SONG Chuan-xue, XIAO Feng, LIU Si-han, LI Shao-kun, DUAN Liang, PENG Si-lun. State estimation of electric vehicle with in-wheel motors based on UKF[J]. 吉林大学学报(工学版), 2016, 46(2): 333 -339 .