Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1763-1771.doi: 10.13229/j.cnki.jdxbgxb.20240906

Previous Articles     Next Articles

Predictive model for identifying innovative university talents based on the swarm intelligence evolution enhanced kernel extreme learning machine

Qing-liang JIN1(),Xin-sen ZHOU2,Yi CHEN2,Cheng-wen WU2()   

  1. 1.Innovation and Entrepreneurship College,Wenzhou University of Technology,Wenzhou 325035,China
    2.College of Computer Science and Artificial Intelligence,Wenzhou University,Wenzhou 325035,China
  • Received:2024-08-17 Online:2025-05-01 Published:2025-07-18
  • Contact: Cheng-wen WU E-mail:QL665003@163.com;jsj_wcw@wzu.edu.cn

Abstract:

To address the issues of strong subjectivity and low accuracy in traditional methods for predicting innovative talents in higher education, this paper proposes an intelligent predictive model that combines a Particle Swarm Optimization algorithm, enhanced with an Information-Guided Communication Search strategy, with a Kernel Extreme Learning Machine. This model aims to more scientifically and objectively identify and select innovative talents by utilizing the improved Particle Swarm Optimization algorithm to enhance population diversity and global search capabilities, thereby improving the classification performance of the Kernel Extreme Learning Machine. To validate its effectiveness, experiments were conducted on a university innovation talent dataset using 10-fold cross-validation. The results demonstrate that the proposed model outperforms several comparative models in key evaluation metrics, including classification accuracy (86.05%), sensitivity (89.74%), specificity (83.24%), and Matthews correlation coefficient (72.42%). These findings confirm the significant advantages of the proposed model in predicting innovative university talents, offering a new technical approach for the scientific selection and cultivation of talent with promising application prospects.

Key words: machine learning, prediction of innovative talent, kernel extreme learning machine, particle swarm optimization

CLC Number: 

  • TP391.4

Fig.1

Flowchart of bICSPSO-KELM"

Table 1

Description of the data set"

标记特征
F1性别
F2年级
F3专业
F4您认为自己主要成长于哪方面
F5生源地
F6对目前所学的专业感兴趣
F7每周课外花在专业学习上的时间有多少
F8您会主动寻找与本专业相关的课外资源和实践机会吗
F9学习专业知识感到开心
F10所学专业课程内容对个人成长和未来发展有多大价值
F11完成专业课程项目或任务时,能感受到明显的成就感
F12积极参与课程相关的实践活动,并有所收获
F13面对一些任务时,经常只求能应付过去
F14常常考虑仔细后才作出决定
F15在他人眼中我是一个慎重的人
F16做事讲究逻辑和条理是我的一个特点
F17我擅长于将问题转化为机会
F18我一直在寻找更好的行事方式
F19如果我坚信某件事,不管成败的可能性如何, 我都会去做
F20没有比看到我的想法变成现实更令人兴奋的事了
F21我是一个月光族
F22当我在超市购物时,会买很多计划外的东西
F23人应该及时行乐
F24如果为了得到一件东西我必须要做出计划和等待,那么我会更加享受这件东西
F25您父亲的最高学历
F26您母亲的最高学历
F27您父母有从事和科学研究相关的职业
F28在您的童年时期,您父母看书的频率如何
F29您家庭成员间会讨论科学新闻、科技进展或科研成果
F30您认为您家庭的年总收入大致处于哪个区间
F31在高中时期,您每年的教育支出约为多少
F32您认为父母对您的学术事业支持程度如何
F33您对当前所学专业的兴趣有多大程度受父母影响
F34您是独生子女吗?如果不是,那么您是家里的第几个孩子
F35您高中阶段老师对专业知识的掌握程度如何
F36您高中阶段的老师有效地将复杂概念讲解得通俗易懂
F37您高中阶段的老师鼓励学生进行独立思考和探索性学习
F38您高中阶段的老师主动引导学生关注科学前沿动态,培养科研兴趣
F39您高中阶段的老师展现出对科学的热情和敬业精神,并对您产生积极影响
F40您获得过奥林匹克竞赛等学科竞赛的省级或省级以上奖项
F41您在上大学前参与过科技创新类活动并完成项目
F42您所在的高中举行过与大学对接的讲座、课程或实践活动
F43您认为你家乡的文化传统有助于你的学业
F44您平均每天花费多少时间浏览社交媒体(如微博、抖音、小红书、知乎等)的内容
F45在社交媒体推送的内容中,更关注学术前沿的内容
F46在社交媒体推送的内容中,更关注哲学思辨的内容
F47在社交媒体推送的内容中,更关注文化艺术的内容
F48在社交媒体推送的内容中,更关注社会热点的内容
F49在社交媒体推送的内容中,更关注休闲娱乐的内容
F50您认为浏览社交媒体的相关内容有助于你的学业
F51在您的求学过程中,有受到国家有关政策的帮助和支持

Table 2

Parameter settings of comparison algorithms"

方 法参数值
bICSPSO-KELMc1=2;c2=2;Vmax=6
PbGSK_V4-KELMminPop=12;fun_no=8
bPSO-KELMw0.2,?0.9;c1=c2=2
bABC-KELMlimit=300;m=2
XGBoostη=0.3;max?_depth=6
RandomFnTree=20
KELMc=88;γ=1024
SVMc=850;γ=0.17

Fig.2

Histogram of the mean error of the bICSPSO-KELM classification results for different transfer functions"

Table 3

Classification results of bICSPSO-KELM for different transfer function cases"

转换函数bICSPSO-KELM
AccuracySensitivitySpecificityMCC
均值/%方差均值/%方差均值/%方差均值/%方差
S185.020.0387.940.0483.130.0570.450.06
S285.190.0488.850.0482.540.0470.790.07
S385.000.0486.800.0683.910.0570.320.08
S485.100.0388.770.0382.430.0470.590.07
V186.050.0489.740.0383.240.0572.420.08
V285.670.0289.280.0383.240.0471.840.03
V385.960.0388.970.0383.610.0472.160.06
V485.670.0290.820.0582.380.0472.110.05

Table 4

Classification results of bICSPSO-KELM on four performance indicators"

折数AccuracySensitivitySpecificityMCC
#184.62%88.89%81.36%69.62%
#286.67%88.00%85.46%73.38%
#391.43%93.75%89.47%82.95%
#481.91%86.67%78.33%64.34%
#591.43%93.88%89.29%82.98%
#679.81%84.09%76.67%60.05%
#790.48%93.62%87.93%81.13%
#883.81%88.64%80.33%68.08%
#986.54%89.36%84.21%73.25%
#1083.81%90.48%79.37%68.46%
均值86.05%89.74%83.24%72.42%
方差0.040.030.050.08

Fig.3

Comparison of classification results of bICSPSO-KELM, PbGSK_V4-KELM, bPSO-KELM,bABC-KELM, XGBoost, RandomF, KELM and SVM on four metrics"

Fig.4

Convergence curves of bICSPSO-KELM with its peer model fitness values"

[1] Li J, Xue E.How talent cultivation contributes to creating world-class universities in China:a policy discourse analysis[J].Educational Philosophy and Theory, 2022, 54(12): 2008-2017.
[2] 史秋衡, 李瑞. 高校拔尖创新人才培养的价值逻辑、关键要素与路径选择[J]. 中国远程教育, 2024, 44(1): 15-24.
Shi Qiu-heng, Li Rui. Value logic, key elements and path selection of top innovative talents training in universities[J]. Distance Education in China, 2024, 44(1): 15-24.
[3] 李润亚, 张潮, 张珂, 等. 大学生创新创业能力系统构成及其表现研究[J]. 教育理论与实践, 2024, 44(18): 10-15.
Li Run-ya, Zhang Chao, Zhang Ke, et al. A study on the system composition and performance of college students' innovation and entrepreneurship ability[J]. Educational Theory and Practice,2024,44(18):10-15.
[4] Gao H W.Innovation and development of ideological and political education in colleges and universities in the network era[J]. International Journal of Electrical Engineering& Education,2021,60(Sup.2): 489-499.
[5] 李立国, 刘振天, 陈恩伦, 等. 笔谈:大学可持续发展的多维思考[J] .现代大学教育, 2023, 39(6): 41-59.
Li Li-guo, Liu Zhen-tian, Chen En-lun, et al. Writing: multi-dimensional thinking on sustainable development of universities [J]. Modern University Education,2023,39(6): 41-59.
[6] 徐玉成, 王波, 朱萍. 科教融汇赋能职业教育人才培养的时代价值、现实困境及破解对策[J].教育学术月刊, 2023(9): 58-66.
Xu Yu-cheng, Wang Bo, Zhu Ping. The times value, realistic dilemma and solutions of talent training in enabling vocational education by integrating science and education[J]. Educational Academic Monthly, 2023(9): 58-66.
[7] Liu Y. Construction of talent training mechanism for innovation and entrepreneurship education in colleges and universities based on data fusion algorithm[J].Frontiers in Psychology,2022,13: 968023.
[8] 周沂, 陈圆月, 冯皓月. 学科交叉推动拔尖创新人才培养的作用研究——来自S大学书院制的经验证据[J]. 湖南师范大学教育科学学报, 2024, 23(1): 33-43.
Zhou Yi, Chen Yuan-Yue, Feng Hao-yue. Research on the role of interdisciplinary interaction in promoting the cultivation of top innovative talents: empirical evidence from the college system of S University[J]. Journal of Education Science, Hunan Normal University, 2024, 23(1): 33-43.
[9] Sarker I H.Machine learning:algorithms, real-world applications and research directions[J]. SN Computer Science, 2021, 2(3): No.160.
[10] Mishra D K, Shinde V.6 A review of global optimization problems using meta-heuristic algorithm[M]∥Aditya K, Ashish K, Nhu Gia N, et al. Nature-Inspired Optimization Algorithms.Berlin,Boston;De Gruyter, 2021: 87-106.
[11] Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization,1997, 11(4): 341-359.
[12] Kennedy J, Eberhart R.Particle swarm optimization[C]∥Proceedings of ICNN'95-International Conference on Neural Networks, Perth, Australia, 1995:488968.
[13] Dorigo M, Birattari M, Stutzle T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.
[14] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J].Advances in Engineering Software, 2014, 69: 46-61.
[15] Lian J, Hui G, Ma L, et al.Parrot optimizer: algorithm and applications to medical problems[J]. Computers in Biology and Medicine, 2024, 172: 108064.
[16] Chauhan S, Vashishtha G, Abualigah L, et al.Boosting salp swarm algorithm by opposition-based learning concept and sine cosine algorithm for engineering design problems[J].Soft Computing, 2023, 27(24):18775-18802.
[17] Gao R, Tao J, Zhang J,et al.NSGA-Ⅲ-SD based fuzzy energy management system optimization for lithium battery/supercapacitor HEV[J].Applied Soft Computing, 2023, 142: 110280.
[18] Dong R, Sun L, Ma L, et al.Boosting kernel search optimizer with slime mould foraging behavior for combined economic emission dispatch problems[J]. Journal of Bionic Engineering, 2023, 20(6): 2863-2895.
[19] Pan X, Zhang G, Lin A,et al.An evaluation model for children's foot& ankle deformity severity using sparse multi-objective feature selection algorithm[J]. Computers in Biology and Medicine, 2022, 151: 106229.
[20] Huang G B, Zhou H, Ding X,et al. Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems, Man, and Cybernetics,Part B(Cybernetics), 2012, 42(2): 513-529.
[21] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[1] Yan-fei LI,Jia-ning WU. Human pose local feature recognition algorithm based on improved RBF neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1749-1755.
[2] Xiu-zhi ZHAO,De-hong XIE. Discrimination method for Pu-er tea varieties based on noise-robust feature extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1756-1762.
[3] Sheng-qi MEI,Xiao-dong LIU,Xing-ju WANG,Xu-feng LI,Teng WU,Xiang-xu CHENG. Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1595-1603.
[4] Yi GUO,Shu-wei WEI,Tao JIANG. Urban passenger transport planning algorithm based on location potential energy and multi source data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1328-1335.
[5] Xiang-hai MENG,Guo-rui WANG,Ming-yang ZHANG,Bi-jiang TIAN. Traffic accident prediction model of mountain highways based on selection integration [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1298-1306.
[6] Yin-fei DAI,Xiu-zhen ZHOU,Yu-bao LIU,Zhi-yuan LIU. In⁃vehicle network intrusion detection system based on CAN bus data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 857-865.
[7] Lei ZHANG,Jing JIAO,Bo-xin LI,Yan-jie ZHOU. Large capacity semi structured data extraction algorithm combining machine learning and deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2631-2637.
[8] Liang-li ZHANG,Xiao-feng MA. New energy vehicle charging station location method based on improved particle swarm optimization algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2275-2281.
[9] Xiao-hong TANG,Yong-jian GONG. Trajectory planning algorithm for grasping manipulator considering energy consumption and load factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1862-1868.
[10] Cheng CHEN,Pei-xin SHI,Peng-jiao JIA,Man-man DONG. Correlation analysis of shield driving parameters and structural deformation prediction based on MK-LSTM algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1624-1633.
[11] Guang-bao LI,Dong GAO,Yong LU,Hao PING,Yuan-yuan ZHOU. Internal surface treatment of gas-liquid-solid technology based on improved neural network and Fluent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1537-1547.
[12] Tao CHEN,Zhi-gang ZHOU,Nan-nan LEI. Multi-objective optimization of parameters of automotive mechanical automatic transmission system based on particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1214-1220.
[13] Ya-dong GONG,Ming-xiang DING,Xiang LI,Jin-min TIAN. Milling analysis and parameter optimization for TC4 titanium alloy material [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 917-925.
[14] Shi-feng NIU,Shi-jie YU,Yan-jun LIU,Chong MA. Real-time detection method of angry driving behavior based on bracelet data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3505-3512.
[15] Li-zhao DAI,Chong WANG,Ping YUAN,Lei WANG. Prediction model for shear capacity of corroded RC beams based on interpretable machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3231-3243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] De-qiang CHENG,Wei-chen WANG,Cheng-gong HAN,Chen LYU,Qi-qi KOU. Self-supervised monocular depth estimation based on improved densenet and wavelet decomposition[J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1682 -1691 .