Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (9): 3032-3041.doi: 10.13229/j.cnki.jdxbgxb.20250454
Zhen HUO1(
),Li-sheng JIN1,2(
),Qiang HUA3, HEYang1
CLC Number:
| [1] | 闵莉, 董冰洁, 安冬. 基于多注意力机制与跨特征融合的语义分割算法[J]. 计算机工程, 2024, 50(8): 282-289. |
| Min Li, Dong Bing-jie, An Dong. Semantic segmentation algorithm based on multi-attention mechanism and cross-feature fusion[J]. Computer Engineering, 2024, 50(8): 282-289. | |
| [2] | Liang Y, Xu Z, Rasti S, et al. On the use of a semantic segmentation micro-service in AR devices for UI placement[C]∥2022 IEEE Games, Entertainment, Media Conference, Bridgetown, Barbados, 2022: 1-6. |
| [3] | Yang L, Bai Y, Ren F, et al. Lcfnets: compensation strategy for real-time semantic segmentation of autonomous driving[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(4): 4715-4729. |
| [4] | Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. Unet++: a nested U-net architecture for medical image segmentation[C]∥Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, 2018: 3-11. |
| [5] | Mo Y, Wu Y, Yang X, et al. Review the state-of-the-art technologies of semantic segmentation based on deep learning[J]. Neurocomputing, 2022, 493: 626-646. |
| [6] | Muhammad K, Hussain T, Ullah H, et al. Vision-based semantic segmentation in scene understanding for autonomous driving: recent achievements, challenges, and outlooks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 22694-22715. |
| [7] | Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(4): 640-651. |
| [8] | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241. |
| [9] | Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. |
| [10] | Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Honolulu, USA, 2017: 6230-6239,. |
| [11] | Paszke A, Chaurasia A, Kim S, et al. Enet: a deep neural network architecture for real-time semantic segmentation[J/OL].[2025-05-10]. |
| [12] | Yu C, Wang J, Peng C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]∥Proceedings of the European Conference on Computer Vision (ECCV),Munich, Germany, 2018: 334-349. |
| [13] | Peng J, Liu Y, Tang S, et al. Pp-liteseg: a superior real-time semantic segmentation model[J/OL]. [2025-05-10]. |
| [14] | Xu J, Xiong Z, Bhattacharyya S P. PIDNet: a real-time semantic segmentation network inspired by PID controllers[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada,2023: 19529-19539. |
| [15] | Takikawa T, Acuna D, Jampani V, et al. Gated-SCNN: Gated shape cnns for semantic segmentation[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 5228-5237. |
| [16] | Yu L, Yao A, Duan J. Improving semantic segmentation via decoupled body and edge information[J]. Entropy, 2023, 25(6): No. 891. |
| [17] | Ding L, Goshtasby A. On the Canny edge detector[J]. Pattern Recognition, 2001, 34(3): 721-725. |
| [18] | Fan M, Lai S, Huang J, et al. Rethinking bisenet for real-time semantic segmentation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Nashville, USA, 2021: 9711-9720. |
| [19] | Niu Z, Zhong G, Yu H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. |
| [20] | Wang Q, Wu B, Zhu P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 11531-11539. |
| [21] | Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene understanding[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas, USA, 2016: 3213-3223. |
| [22] | Zhou Q, Wang L, Gao G, et al. Boundary-guided lightweight semantic segmentation with multi-scale semantic context[J]. IEEE Transactions on Multimedia, 2024, 26: 7887-7900. |
| [23] | 江晟,路启,夏淼磊,等.基于特征融合注意力的RGB-D语义分割算法[J/OL]. [2025-05-10]. |
| [24] | Perazzi F, Pont-Tuset J, McWilliams B, et al. A benchmark dataset and evaluation methodology for video object segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 724-732. |
| [25] | Yu C, Gao C, Wang J, et al. Bisenet v2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129: 3051-3068. |
| [26] | Han H Y, Chen Y C, Hsiao P Y, et al. Using channel-wise attention for deep CNN based real-time semantic segmentation with class-aware edge information[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(2): 1041-1051. |
| [27] | Tsai T H, Tseng Y W. BiSeNet V3: bilateral segmentation network with coordinate attention for real-time semantic segmentation[J]. Neurocomputing, 2023, 532: 33-42. |
| [28] | Liu Q, Wang C, Li Z, et al. Attention based lightweight asymmetric network for real-time semantic segmentation[J]. Engineering Applications of Artificial Intelligence, 2024, 130: No.107736. |
| [1] | Jun-wu ZHAO,Ting QU,Yun-feng HU. Trajectory planning for intelligent vehicles based on adaptive sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2802-2816. |
| [2] | Ying YU,Chun-ping WANG,Ren-ke KOU,Bo-xiong YANG,Lei WANG,Fu-jun ZHAO,Qiang FU. Semantic segmentation algorithm for multi temporal high⁃resolution satellite remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2131-2137. |
| [3] | Hua CAI,Yu-yao WANG,Qiang FU,Zhi-yong MA,Wei-gang WANG,Chen-jie ZHANG. Semantic segmentation network based on attention mechanism and feature fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(4): 1384-1395. |
| [4] | Hong-yan GUO,Jia-ming ZHANG,Jun LIU,Yun-feng HU. Construction of virtual test scenario for intelligent vehicle and pedestrian interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2511-2519. |
| [5] | Xian-yi XIE,Ming-jun ZHANG,Li-sheng JIN,Bin ZHOU,Tao HU,Yu-fei BAI. Artificial bee colony trajectory planning algorithm for intelligent vehicles considering comfortable [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1570-1581. |
| [6] | Li-xin YAN,Jin-pei FENG,Jun-hua GUO,Yi-ke GONG. Analysis of characteristics of the takeover behavior of co⁃driving intelligent vehicles under different dangerous scenarios [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 683-691. |
| [7] | Xian-yi XIE,Yu-han WANG,Li-sheng JIN,Xin ZHAO,Bai-cang GUO,Ya-ping LIAO,Bin ZHOU,Ke-qiang LI. Intelligent vehicle trajectory tracking control based on adjusting step size of control horizon [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 620-630. |
| [8] | Zhen-hai GAO,Rong-gui CAI,Tian-jun SUN,Tong YU,Hao-yuan ZHAO,Hao BAN. Data⁃filtering method for driving behavior based on vehicle shared autonomy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 589-599. |
| [9] | Guo LIU,Jian XIONG,Xiu-jian YANG,Yang-fan HE. Intelligent vehicle trajectory tracking control based on curvature augmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3717-3728. |
| [10] | Yun QUE,Xue JI,Zi-ping JIANG,Yi DAI,Ye-fei WANG,Jia CHEN. Semantic segmentation algorithm of pavement cracks based on GAN data augmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3166-3175. |
| [11] | Wei ZHANG,Shu-pei ZHANG,Chong-en LUO,Sheng ZHANG,Guo-lin WANG. Collision avoidance trajectory planning for intelligent vehicles in emergency conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1515-1523. |
| [12] | Xue-yun CHEN,Xue-yu BEI,Qu YAO,Xin JIN. Pedestrian segmentation and detection in multi-scene based on G-UNet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 925-933. |
| [13] | ZHANG Lin, ZHANG Xin-jie, GUO Kong-hui, WANG Chao, LIU Yang, LIU Tao. Rolling window optimization for intelligent vehicle trajectory planning in unknown environment [J]. 吉林大学学报(工学版), 2018, 48(3): 652-660. |
| [14] |
LI Ai-juan,LI Shun-ming,ZHAO Wan-zhong,SHEN Huan,JIANG Xing-xing, QIU Xu-yun,WANG Hui-jun. Optimal control theory based trajectory generation method for intelligent vehicle [J]. 吉林大学学报(工学版), 2014, 44(5): 1276-1282. |
| [15] | LI Ai-juan, LI Shun-ming, SHEN Huan, MIAO Xiao-dong. ACT-R based dynamic trajectory optimization method for intelligent vehicles [J]. 吉林大学学报(工学版), 2013, 43(05): 1184-1189. |
|
||